Math, asked by Anonymous, 4 months ago

Find first moment of area about x-axis for area under curve y=1+x+x^2 from x=o to x=2. Your answer should be correct to one decimal.​

Answers

Answered by mathdude500
4

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

Let us consider a curve y = f(x) from x = a to x = b, then first moment of area about x - axis is given by

 \bf \: M_y \:  =  \:\: \int_a^b \:\dfrac{  \{{f(x) \}}^{2} }{2}  \: dx

\large\underline{\bold{Solution-}}

Given that

  • f(x) = 1 + x + x²

  • a = 0

  • b = 2

Now,

First moment of area about x - axis is given by

\rm :\longmapsto\: \: M_y \:  =  \:\: \int_a^b \:\dfrac{  \{{f(x) \}}^{2} }{2}  \: dx

\rm :\longmapsto\: \: M_y \:  =  \:\: \int_0^2 \:\dfrac{ {(1 + x +  {x}^{2} )}^{2}  }{2}  \: dx

\rm :\longmapsto\: \: M_y \:  =  \:\: \int_0^2 \:\dfrac{1 +  {x}^{2} +  {x}^{4}  +2x +  2 {x}^{3} +  2{x}^{2}}{2}  \: dx

\rm :\longmapsto\: \: M_y \:  =  \:\: \int_0^2 \:\dfrac{ 1 + 2x +  {3x}^{2} + 2 {x}^{3}  +  {x}^{4}}{2}  \: dx

\rm :\longmapsto\:M_y = \dfrac{1}{2} \bigg( x + \dfrac{2 {x}^{2} }{2}  + \dfrac{3 {x}^{3} }{3}  + \dfrac{2 {x}^{4} }{4}  + \dfrac{ {x}^{5} }{5}\bigg) _0^2

\rm :\longmapsto\:M_y = \dfrac{1}{2} \bigg(2 + 4 + 8 + 8 +  \dfrac{32}{5} \bigg)

\rm :\longmapsto\:M_y = \dfrac{1}{2} \bigg(22+  \dfrac{32}{5} \bigg)

\rm :\longmapsto\:M_y = \dfrac{1}{2} \bigg( \dfrac{110 + 32}{5} \bigg)

\rm :\longmapsto\:M_y = \dfrac{1}{2} \times  \bigg(\dfrac{142}{5} \bigg)

\bf\implies \:M_y = 14.2

Additional Information :-

Let us consider a curve y = f(x) from x = a to x = b, then

1. First moment of area about y - axis is given by

\rm :\longmapsto\:M_x = \: \int_a^b \:x y \: dx

and

 2. \:  \: \sf \: Centroid \:  is \: given \: by \:  ({\overline x }, \: {\overline y})

where,

\rm :\longmapsto\:{\overline x } = \dfrac{1}{A}  \: \int_a^b \:x y \: dx

and

\rm :\longmapsto\:{\overline y } = \dfrac{1}{A}  \: \int_a^b \:\dfrac{ {y}^{2} }{2}  \: dx

and

\rm :\longmapsto\:A \:  =  \: \int_a^b \: y \: dx

Similar questions