Math, asked by archit124, 1 year ago

find five number in AP, whose sum is 35.and the sum of whose squares is 285

Answers

Answered by siddhartharao77
20

Answer:

3,5,7,9,11 (or) 11,9,7,5,3

Step-by-step explanation:

Let the numbers in AP = a - 2d, a - d, a, a + d, a + 2d.

(i)

Given that Sum is 35.

⇒ a - 2d + a - d + a + a + d + a + 2d = 35

⇒ 5a = 35

⇒ a = 7


(ii)

Sum of whose squares is 285.

⇒ (a - 2d)² + (a - d)² + a² + (a + d)² + (a + 2d)² = 285

⇒ 5a² + 10d² = 285

⇒ 5(7)² + 10d² = 285

⇒ 245 + 10d² = 285

⇒ 10d² = 40

⇒ d² = 4

⇒ d = ±2.


When d = 2:

a - 2d = 7 - 2(2) = 3

a - d = 5

a = 7

a + d = 9

a + 2d = 7 + 2(2) = 11.


When d = -2:

a - 2d = 7 - 2(-2) = 11

a - d = 9

a = 7

a + d = 5

a + 2d = 3.


Therefore, the numbers are : 3,5,7,9,11 (or) 11,9,7,5,3.


Hope it helps!

Answered by Siddharta7
5

Step-by-step explanation:

Let five numbers in A.P. be a – 2d, a – d, a, a + d and a + 2d.

Given (a – 2d) + (a – d) + a + (a + d) + (a+ 2d) = 30

Putting a = 6, we get

When a = 6 and d = 2, we get

when a = 6 and d = –2, we get

Five numbers in A.P. are 2, 4, 6, 8 and 10.

Thus, the third number is 6.

Similar questions