Find five numbers in ap whose sum is 25 and the sum of whose square is 135
Answers
Answered by
1
(x - 2d) + (x - d) + x + (x + d) + (x + 2d) = 25
x = 5
(5 - 2d)^2 + (5 - d)^2 + 5^2 + (5 + d)^2 + (5 + 2d)^2 = 135
25 - 20d + 4d^2 + 25 - 10d + d^2 + 25 + 25 + 10d + d^2 + 25 + 20d + 4d^2 = 135
10d^2= 10
d = 1
thus the five numbers are:
3, 4, 5, 6, 7
Check:
3 + 4 + 5 + 6 + 7 = 25
9 + 16 + 25 + 36 + 49 = 135
Answered by
3
i hope this helps you solve the problem plz mark as brainliest
Attachments:
Similar questions