find five numbers in AP whose sum is
and ratio of first to last is 2:3
Answers
Answer :
☞ ( 5 / 8 ) , ( 25 / 16 ) , ( 40 / 16 ) , ( 55 / 16 ) , ( 70 / 16 )
Explanation :
● Sum of an AP is given by,
Sn = n / 2 [ 2a + ( n - 1 ) d ]
=> S5 = 5 / 2 [ 2a + ( 5 - 1 ) d ]
=> 25 / 2 = 5 / 2 [ 2a + 4d ]
=> ⋆ a + 2d = 5 / 2 ...... ( 1 st equation )
● Also given, Ratio = 2 : 3
=> a / d = 2 / 3
=> ⋆ a = 2d / 3 ...... ( 2 nd equation )
● Putting values ( 2 ) in ( 1 ) :
=> 2d / 3 + 2d = 5 / 2
=> ( 2 × 2 )d + ( 6 × 2 )d = 5 × 3
=> 4d + 12d = 15
=> 16d = 15
=> ⋆ d = 15 / 16
● Putting ( 2 ) value in ( 1 ) :
=> a = 2d / 3
=> a = 2 / 3 × 15 / 16
=> ⋆ a = 5 / 8
● So, First 5 terms of an AP are,
→ a , ( a + d ) , ( a + 2d ) , ( a + 3d ) , ( a + 4d )
→ ( 5 / 8 ) , ( 5 / 8 + 15 / 16 ) , ( 5 / 8 + ( 2 × 15 / 16 ) ) , ( 5 / 8 + ( 3 × 15 / 16 ) ) , ( 5 / 8 + ( 4 × 15 / 16 ) )
→ ⋆ 5 / 8 , 25 / 16 , 40 / 16 , 55 / 16 , 70 / 16
______________________
[ Eg; Note : Finding 5 terms,
• ( 5 / 8 + 2 × 15 / 16 )
• ( 5 / 8 + ( 2 × 15 / 16 )
• ( 5 / 8 + 30 / 16 ) { LCM = 16 }
• 10 + 30 / 16
• ⋆ 40 / 16
Same for all ]
_______________________