Math, asked by nikitathorat4875, 10 months ago

find five numbers in GP such that their sum is 31/4 and product is 1​

Answers

Answered by hukam0685
11

Step-by-step Explanation

Given that:

Find five numbers in GP such that their sum is 31/4 and product is 1.

Solution: To find five numbers in GP,

it is always convenient to take those numbers

 \frac{a}{ {r}^{2} },  \:  \frac{a}{r},  \: a, \: ar, \: a {r}^{2}

Now according to the question

Sum of these are 31/4

\frac{a}{ {r}^{2} } + \frac{a}{r} +  a +  ar +  a {r}^{2}  =  \frac{31}{4}  \\

Product is 1

\frac{a}{ {r}^{2} }  \times  \frac{a}{r}  \times a \times  ar  \times  a {r}^{2}  = 1 \\  \\  {a}^{5}  = 1 \\  \\  {a}^{5}  =  {1}^{5}  \\  \\ a = 1 \\

Now put the value of a in eq 1

\frac{1}{ {r}^{2} } +  \frac{1}{r}  +  1 + r  +  {r}^{2}  =  \frac{31}{4}  \\  \\

Now manipulate the terms,

(r +  \frac{1}{r} ) + ( {r}^{2}  +  \frac{1}{ {r}^{2} } ) + 1 =  \frac{31}{4}  \\  \\ (r +  \frac{1}{r} ) + ( {r}^{2}  +  \frac{1}{ {r}^{2} } ) + 2 - 2 + 1 =  \frac{31}{4}  \\  \\  {(r +  \frac{1}{r} })^{2}  + (r +  \frac{1}{r} ) - 1  -  \frac{31}{4}  = 0 \\  \\  {(r +  \frac{1}{r} })^{2}  + (r +  \frac{1}{r} ) - \frac{35}{4}  = 0 \\  \\

It is a quadratic equation in (r+1/r),

For simplification put (r+1/r)= t

 {t}^{2}  + t -  \frac{35}{4}  = 0 \\  \\ here \: a = 1 \\  \\ b = 1 \\  \\ c =  \frac{ - 35}{4}  \\  \\

Apply quadratic formula

t_{1,2} =  \frac{ - b ±  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\t_{1,2}  =  \frac{ - 1 ±  \sqrt{ {1}^{2} - 4 \times 1 \times  \frac{ - 35}{4}  } }{2} \\  \\ t_{1,2}  =  \frac{ - 1 ±  \sqrt{1 + 35} }{2}  \\  \\ t_{1,2}  =  \frac{ - 1 ±  \sqrt{36} }{2}  \\  \\ t_1 =  \frac{ - 1 +  6}{2}  \\  \\ t_1=  \frac{ 5}{2}  \\   \\ t_2 =  \frac{ - 7}{2}  \\  \\

Put the value of t1 and t2

r +  \frac{1}{r}  =  \frac{5}{2}  \\  \\  2({r}^{2}  + 1) = 5r \\  \\ 2 {r}^{2}  - 5r + 2 = 0 \\  \\ 2 {r}^{2}  - 4r - r + 2 = 0 \\  \\ 2r(r - 2) - 1(r - 2) = 0 \\  \\ (r - 2)(2r - 1) = 0 \\  \\ \bold{\red{r = 2}} \\  \\\bold{\blue{ r =  \frac{ 1}{2}}}  \\  \\

By putting another value of t

r +   \frac{1}{r}  =  \frac{ - 7}{2}  \\  \\ 2( {r}^{2}  + 1) =  - 7r \\  \\ 2 {r}^{2}  + 7r + 2 = 0 \\  \\ r_{1,2} =  \frac{ - 7 ±  \sqrt{49 - 16} }{4}  \\  \\ r_{1,2}  =  \frac{ - 7 ±  \sqrt{33} }{4}  \\  \\

Thus the terms of GP are

 \bold{\frac{1}{4} ,\:   \frac{1}{2} , \: 1 ,\: 2, \: 4}

Another

 \bold{\frac{16}{( - 7 +  \sqrt{33} )^{2}  } , \:  \frac{4}{ - 7 +  \sqrt{33} } , \: 1, \:  \frac{- 7 +  \sqrt{33}}{4} , \:\frac{ ( - 7 +  \sqrt{33} )^{2}}{16} } \\  \\

and

 \bold{\frac{16}{( - 7 - \sqrt{33} )^{2}  } , \:  \frac{4}{ - 7 -  \sqrt{33} } , \: 1, \:  \frac{- 7 -  \sqrt{33}}{4} , \:\frac{ ( - 7 -  \sqrt{33} )^{2}}{16} } \\  \\

Hope it helps you.

Similar questions