Math, asked by akhilavijayan8451, 1 month ago

Find fog gof when f(x)=2x+1 and g(x) =x^2-2

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given functions are

\rm \:f(x) = 2x + 1 \:  \:

and

\rm \:g(x) =  {x}^{2} - 2

Now, Consider

 {\sf \:fog(x)}

\rm \:  =  \:f\bigg[g(x)\bigg]

\rm \:  =  \:f( {x}^{2} - 2)

\rm \:  =  \:2( {x}^{2} - 2) + 1

\rm \:  =  \:2{x}^{2} -4 + 1

\rm \:  =  \:2{x}^{2} -3

 {\bf\implies \:\boxed{ \sf{ \: fog(x) =  {2x}^{2} - 3 \:  \: }}}

Now, Consider

 {\rm\:gof(x) \: }

\rm \:  =  \:g\bigg[f(x)\bigg]

\rm \:  =  \:g(2x + 1)

\rm \:  =  \: {(2x + 1)}^{2} - 2

\rm \:  =  \: {4x}^{2} + 1 + 4x - 2

\rm \:  =  \: {4x}^{2} + 4x - 1

 {\bf\implies \:\boxed{ \sf{ \: gof(x) =  {4x}^{2} + 4x  - 1 \:  \: }}}

Therefore,

 {\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:\begin{cases} &\sf{fog(x) =  {2x}^{2} - 3 } \\ \\  &\sf{gof(x) =  {4x}^{2} + 4x - 1} \end{cases}\end{gathered}\end{gathered}}

Similar questions