Math, asked by jitsinfhb, 2 months ago

find for x:25^x-1^x 5^2x+1= 10^2 ^× 5 + 5^3​

Answers

Answered by rubansebastian3
0

Answer:

   25^x-1 = 5^(2x-1) - 100

⇒ 5^2x-2 = 5^(2x-1) - 100

⇒ 5^2x-2 - 5^2x-1 = -100

⇒ 5^2x [ 5^-2 - 5^-1] = - 100

⇒ 5^2x [ 1  -  1 ]  = - 100

            25    5

⇒ 5^2x [ 1 - 5]  = - 100

              25

⇒ 5^2x [ -4 ] = - 100

             25

⇒ 5^2x [-4] = -100 * 25

⇒ 5^2x = 100 * 25     [ - * - = +]

                 4  

⇒ 5^2x = 625

⇒ 5^2x  = 5^4  

so, ⇒  2x = 4

     ⇒  x = 2

Step-by-step explanation:

Answered by vivekvicky08328
0

Answer:

we need to bring together the terms containing x. Then constant terms on the other side. Then simplify by performing the addition/subtraction/multiplication.

\begin{gathered}25^{x-1}=5^{2x-1}-100\\\\= > \ (5^2)^{x-1}=5^{2x-1}\ -2^2*5^2\\\\= > \ 5^{2x-2}-5^{2x-1}\ = - 2^2*5^2\\\\= > \ 5^{2x-2}*[ 1-5^1 ]=-2^2*5^2\\\\= > \ 5^{2x-2}*-4=-4*5^2\\\\= > \ 2x-2=2\\\\x=2\end{gathered}

25

x−1

=5

2x−1

−100

=> (5

2

)

x−1

=5

2x−1

−2

2

∗5

2

=> 5

2x−2

−5

2x−1

=−2

2

∗5

2

=> 5

2x−2

∗[1−5

1

]=−2

2

∗5

2

=> 5

2x−2

∗−4=−4∗5

2

=> 2x−2=2

x=2

Similar questions