Math, asked by Makarand1, 1 year ago

Find four consecutive terms in an A.P such that the sum of middle terms is 26 and the product of the two end terms is 88.

Answers

Answered by kaybar1
2
let them be x-3d x-d x+d x+3d therefore x+x =26 x=13 also x2 - (3d)2 = 88 solve the rest

kaybar1: 4,10,16,22 is the ap
Answered by karthik4297
2
Let the four consecutive terms of A.P are a, a+d, a+2d, a+3d ,
where  a is 1st term and d is the common difference.
A/Q,
Sum of two middle terms = 26
⇒ a+d + a+2d = 26
⇒ 2a+3d = 26
3d = 26 - 2a
⇒  d = (26-2a)/3    ---------------(i)
and,
Product of two end terms = 88
⇒ (a).(a+3d) = 88
⇒  a² +3ad = 88
⇒  a² + 3a(26-2a)/3 = 88
⇒  a² + a(26-2a) = 88
⇒  a² + 26a -2a² = 88
⇒  -a² + 26a -88 = 0
⇒  a² - 26a + 88 = 0
⇒  a² - 22a - 4a + 88 = 0
⇒  a(a - 22) - 4(a - 22) = 0
⇒  (a - 4)(a - 22) = 0
⇒  a - 4 = 0
        a =  4
put the value of a in Equation (i)
       d = (26 - 2*4)/3 = (26 - 8)/3
⇒    d = 18/3 = 6
        d = 6
Therefore four consecutive terms of A.P are:-
4, 4+6, 4+2*6 and 4+3*6
i.e,
4, 10, 16 and 22


or,
⇒   a - 22 = 0 ⇒ a = 22
put the value of a in Equation (i)
    d = (26  - 2*22)÷3
⇒ d = (26 - 44)/3
⇒ d = -18/3 = -6
Therefore four consecutive terms of A.P are:-
22, 22-6, 22-2*6 and  22-3*6
i.e
22, 16, 10 and 4.

Similar questions