Find four consecutive terms in an A.P. whose sum is 36 and the product of the 2nd
and the 4th is 105. The terms are in ascending order.
Answers
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
- Sum of four consecutive terms in an A.P. is 36
- The product of the 2nd and the 4th is 105
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
- The four consecutive terms
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
We know that ,
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
➠ ⚊⚊⚊⚊ ⓵
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Given that , Sum of four consecutive terms in an A.P. is 36
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
- n = 4
- a = a
- d = d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the above values in ⓵ ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ 18 = 2a + 3d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ 2a + 3d = 18
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ ⚊⚊⚊⚊ ⓶
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
➠ ⚊⚊⚊⚊ ⓷
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
- a = a
- d = d
- n = 2
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the above values in ⓷ ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ ⚊⚊⚊⚊ ⓸
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
- a = a
- d = d
- n = 4
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the above values in ⓷ ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ ⚊⚊⚊⚊ ⓹
ㅤㅤㅤㅤㅤㅤㅤㅤ
Given that , The product of the 2nd and the 4th is 105
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Thus ,
ㅤㅤㅤㅤㅤㅤㅤㅤ
From ⓸ & ⓹
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ (a + 3d)(a + d) = 105
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a(a + d) + 3d(a +d) = 105
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a² + ad + 3ad + 3d² = 105
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a² + 4ad + 3d² = 105 ⚊⚊⚊⚊ ⓺
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the value of 'a' from ⓶ to ⓺ ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a² + 4ad + 3d² = 105
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Dividing the above equation by '3' ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ (d - 8)(d - 4) = 0
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
- d = 8
- d = 4
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Case I (If d = 8)
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting d = 8 in ⓶ ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: : ➨ a = -3
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a + 0d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the values ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a + d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the values ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
Answer- Continuity of @EliteZeal's answer...
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a + 2d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the values ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a + 3d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the values ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
So the AP in this case is -
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
➠ -3 , 5 , 13 , 21 ⚊⚊⚊⚊ ⓻
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Hence the AP is -3 , 5 , 13 , 21
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Case II (If d = 4)
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting d = 4 in ⓶ ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a = 3
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a + 0d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the values ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a + d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the values ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a + 2d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the values ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜ a + 3d
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
⟮ Putting the values ⟯
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
: ➜
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
So the AP in this case is -
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
➠ 3 , 7 , 11 , 15 ⚊⚊⚊⚊ ⓼
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Hence the AP is 3 , 7 , 11 , 15.
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ