Math, asked by Like4568, 2 months ago

Find four rational number between 1/6 and 1/3

Answers

Answered by AmritRaj001
11

Let\: q_1, \:  q_2,  \: q_3,  \: and \:  q_4  \: be  \: the  \:  \\ four \:   required \:  rational  \: numbers.

Then,

q_1 =  \frac{1}{2} ( \frac{1}{6}  +  \frac{1}{3} ) \\   \\  =  \frac{1}{2} ( \frac{1 + 2}{6} ) \\   \\  =  \frac{1}{4}

q_2 =  \frac{1}{2} ( \frac{1}{4}  +  \frac{1}{3} ) \\  \\  =  \frac{1}{2} ( \frac{3 + 4}{12} ) \\  \\  =  \frac{7}{24}

q_3 =  \frac{1}{2} ( \frac{7}{24}  +  \frac{1}{3} ) \\  \\  =  \frac{1}{2} ( \frac{7 + 8}{24} ) \\  \\  =  \frac{5}{16}

q_4 =  \frac{1}{2} ( \frac{5}{16}  +  \frac{1}{3} ) \\  \\  =  \frac{1}{2} ( \frac{15 + 16}{48} ) \\  \\  =  \frac{31}{96}

 \sf{Hence, the \:  four  \: rational number } \\  \sf between  \frac{1}{6}  \: and \:  \frac{1}{3} are \:  \frac{1}{4},\frac{7}{24} , \frac{5}{16}  \: and \:  \frac{31}{96} .

Answered by ziddigirl789
15

Step-by-step explanation:

to find:-

rational number between

 \frac{1}{6} and \:  \frac{1}{3}  \\ lcm \: of3 \: and \: 6 \: is \: 6 \:  \\  \frac{1}{6}  \times  \frac{1}{1}  =  \frac{1}{6}  \\  \frac{1}{3}  \times  \frac{2}{2}  =  \frac{2}{6}  \\  \\  \frac{1}{6}  \times  \frac{5}{5} =  \frac{5}{30}   \\  \frac{2}{6}  \times  \frac{5}{5}  =   \frac{10}{30}  \\ rational \: number \: are \\  \frac{6}{10}  \:  \:  \frac{7}{10} \:  \:  \frac{8}{10}   \:  \:  \frac{9}{10}

hope it help you

♡♡♡♡♡♡♡♡♡

Similar questions