Math, asked by mahe7513, 1 year ago

Find four terms in an ap whose sum is 20 and sum of whose squares is 120

Answers

Answered by AMGTHEGREAT
3

Plz follow me and Mark this answer as the brainliest......

Attachments:
Answered by jaslynshawn
1

Answer:  if a=4, d=2 ∴ the 4 terms are 2, 4, 6 and 8

if a= 6, d= -2 ∴ the 4 terms are 6, 4, 2 and 0

Step-by-step explanation: LET THE 4 TERMS BE (a-d), a, (a+d), (a+2d)

sum of the terms

(a-d)+ a + (a+d) + (a+2d) = 20

a -d + a + a + d + a + 2d =20

4a + 2d = 20

2a + d = 10

d = 10-2a

sum of whole squares

(a-d)² + a² + (a+d)² + (a+2d)² = 120

a² + d² -2ad + a² + a² + d² + 2ad + a² + 4d² + 4ad = 120

4a² + 6d² + 4ad = 120

2a² + 3d² + 2ad = 60

2a² + 3(10-2a)² + 2a(10-2a) = 60

2a² + 3(100+4a²-40a) + 20a - 4a² = 60

2a² + 300 + 12a² - 120a + 20a - 4a² = 60

10a² - 100a + 300 = 60

a² - 10a + 30 = 6

a² - 10 + 24 = 0

a² - 4a - 6a + 24 = 0

(a-4)(a-6) = 0

a=4      a=6

if a=4

d= 10-2a= 10 - 2(4) = 2

∴ the numbers are (a-d), a, (a+d), (a+2d) = (4-2), 4, (4+2), (4+2(2) = 2, 4, 6, 8.

if a=6

d=10-2a= 10 - 2(6) = -2

∴ the numbers are (a-d), a, (a+d), (a+2d)=(4-(-2), 4, (4+(-2), (4+2(-2)= 6, 4, 2, 0.

Similar questions