Math, asked by mrharry27, 7 days ago

find fourth proportional to:
a³-b³,a⁴+a²b²+b⁴,a-b

no wrong answers or
account will be reported

Answers

Answered by rakeshdubey33
1

Step-by-step explanation:

Let the fourth proportional be x.

( {a}^{3}  -  {b}^{3}) : ( {a}^{4}  +  {a}^{2} {b}^{2}   +  {b}^{4}) =  \\ ( {a}   -  {b}) :  x

x =  \frac{( {a}^{4}  +  {a}^{2} {b}^{2}   +  {b}^{2})  \times (a \:  - b)}{ {a}^{3}  -  {b}^{3} }

x =  \frac{( {a}^{4}  +  {a}^{2} {b}^{2}   +  {b}^{2})  \times (a \:  - b)}{ ({a}  -  {b})( {a}^{2}   + ab \:  +  {b}^{2} )}

x =  \frac{( {a}^{4}  +  {a}^{2} {b}^{2}   +  {b}^{4}) }{( {a}^{2}  + ab \:  +  {b}^{2} )}

x =  \frac{( {a}^{2}  +  {a} {b}   +  {b}^{2})( {a}^{2} \:  - ab   +  {b}^{2}) }{( {a}^{2}  + ab \:  +  {b}^{2} )}

x =  {a}^{2}  - ab +  {b}^{2}

Hence, the answer.

Similar questions