Math, asked by riya4235208, 8 months ago

Find fourth root of 124 – 32√15​

Answers

Answered by shrutikhot
0

Answer:

So the value of fourth root 124+32√15 is (√3 + √5)

hope this will help you....please Mark me as Brainlest....and follow me

Answered by Anonymous
6

Answer:

√5 – √3

Step-by-step explanation:

124 – 32√15

= 60 + 64 – 32√15

(8) {}^{2}  + (2 \sqrt{15} ) {}^{2}  - 2.8.2 \sqrt{15}

 = (8 - 2 \sqrt{5} )  {}^{2}

Therefore fourth root

 =  \sqrt[4]{(8 - 2 \sqrt{15} } ) {}^{2}  \\  \\  =  \sqrt[2]{8 - 2 \sqrt{15} }  \\  \\  =  \sqrt[2]{3 + 5 - 2 \sqrt{15} }  \\  \\  =  \sqrt[2]{3 + 5 - 2 \sqrt{15} }  \\  \\  =  \sqrt[2]{3 + 5 - 2 \sqrt{15} }  \\  \\  =  \sqrt[2]{( \sqrt{5}  -  \sqrt{3} }) {}^{2}      \\  \\  =  \sqrt{5}  -  \sqrt{3}

Hence, four root of 124 – 32√15 is √5 – √3.

Similar questions