Math, asked by sujalbhutada292, 4 months ago

find fourth term of an AP whose first term is 5 and common difference is -5​

Answers

Answered by anisha12358
2

a=5

d= -5

n=4

a4= a+(n-1) d

=5+(4-1)-5

= 5-15

= -10.

I hope my answer helps you

thank you

stay safe

Answered by SarcasticL0ve
7

Given:

  • First term of AP = 5
  • Common difference = - 5

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Fourth term of AP?

⠀⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{a_4 = a + 3d}}}}\\ \\

\sf Here \begin{cases} & \sf{First\;term,\;a = \bf{5}}  \\ & \sf{Common\; Difference,\;d = \bf{- 5}}  \end{cases}\\ \\

:\implies\sf a_4 = 5 + 3(-5)\\ \\

:\implies\sf a_4 = 5 - 15\\ \\

:\implies{\boxed{\sf{\purple{a_4 = - 10}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;fourth\;term\;of\;an;AP\:is\; \bf{-10}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\underline{\underline{\bigstar \: \bf\:Formula\:Related\:to\:AP\:\bigstar}}}

⠀⠀⠀⠀⠀⠀⠀

\sf (i)\;The\; n^{th}\;term\;of\;an\;AP\; = \; \red{a_n + (n - 1)d}

⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Sum\;of\;n\;term\;of\;an\;AP\; = \; \purple{S_n = \dfrac{n}{2} \bigg\lgroup\sf 2a + (n - 1)d \bigg\rgroup}

⠀⠀⠀⠀⠀⠀⠀

\sf (iii)\;Sum\;of\;all\;terms\;of\;AP\;having\;last\:term\;as\;'l'\; = \; \pink{ \dfrac{n}{2}(a + l)}

Similar questions