Math, asked by gudasahasrasa, 2 months ago

Find fourth vertex of the parallelogram whose three vertices are A( 3, -4) B ( -1, -3) C( -6, 2).

Answers

Answered by BrainlyRish
4

Given : The three vertices of Parallelogram are A( 3, -4) B ( -1, -3) C( -6, 2) .

Exigency to find : The Fourth Vertex or Vertex of D of Parallelogram.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the Fourth Vertex or Vertex of D of Parallelogram be ( x , y ) .

As , we know that ,

  • In Parallelogram the Diagonal bisects each other .

Therefore ,

⠀⠀━━ Midpoint of AC = Midpoint of BD . [ Refer The given attachment ]

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{Mid\:Point \:: \bigg( \dfrac{ x_1 + x_2 }{2} , \dfrac{y_1 + y_2 }{2} \bigg) }\bigg\rgroup \\\\

⠀⠀━━Now , By Using Mid Point Theorem :

⠀⠀━━ Midpoint of AC = Midpoint of BD .

 \qquad :\implies \sf \bigg( \dfrac{ 3 -6 }{2} , \dfrac{ -4 + 2}{2} \bigg) = \bigg( \dfrac{ -1  + x  }{2} , \dfrac{ -3 + y}{2} \bigg) \\\\ :\implies \sf \bigg( \dfrac{  -3 }{2} , \dfrac{ -2}{2} \bigg) = \bigg( \dfrac{ -1  + x  }{2} , \dfrac{ -3 + y}{2} \bigg) \\\\  \bf Therefore\:\: : \\\\ :\implies \sf \bigg( \dfrac{ -3  }{2} = \dfrac{ -1 + x }{2} \bigg) ,  \bigg( \dfrac{ -2  }{2} = \dfrac{ -3 + y}{2} \bigg) \\\\

⠀⠀⠀⠀⠀Finding x :

\qquad:\implies \sf \bigg( \dfrac{ -3  }{2} = \dfrac{ -1 + x }{2} \bigg) \\\\

⠀By Cross Multiplication :

\qquad:\implies \sf \bigg( \dfrac{ -3  }{2} = \dfrac{ -1 + x }{2} \bigg) \\\\

\qquad:\implies \sf \bigg(  2(-3)   = 2( -1 + x)  \bigg) \\\\

\qquad:\implies \sf \bigg(  -6   = 2( -1 + x)  \bigg) \\\\

\qquad:\implies \sf \bigg(  -6   = -2 + 2x  \bigg) \\\\

\qquad:\implies \sf \bigg(  -6  + 2 =  2x  \bigg) \\\\

\qquad:\implies \sf \bigg( -4 =  2x  \bigg) \\\\

\qquad:\implies \sf \bigg(  \cancel {\dfrac{-4}{2}} = x  \bigg) \\\\

\qquad \longmapsto \frak{\underline{\purple{\:x = -2 }} }\bigstar \\

⠀⠀⠀⠀⠀Finding y :

\qquad:\implies \sf \bigg( \dfrac{ -2  }{2} = \dfrac{ -3 + y}{2} \bigg) \\\\

⠀⠀By Cross Multiplication :

\qquad:\implies \sf\bigg( \dfrac{ -2  }{2} = \dfrac{ -3 + y}{2} \bigg) \\\\

\qquad:\implies \sf\bigg(  2(-2)  = 2( -3 + y) \bigg) \\\\

\qquad:\implies \sf\bigg(  -4   = 2( -3 + y) \bigg) \\\\

\qquad:\implies \sf\bigg(  -4   = -6 + 2y \bigg) \\\\

\qquad:\implies \sf\bigg(  -4 + 6  =  2y \bigg) \\\\

\qquad:\implies \sf\bigg(  2  =  2y \bigg) \\\\

\qquad:\implies \sf \bigg(  \cancel {\dfrac{2}{2}} = y  \bigg) \\\\

\qquad \longmapsto \frak{\underline{\purple{\:y = 1 }} }\bigstar \\

Therefore,

  • x = -2 .
  • y = 1 .

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:Vertex\:D\:or\:Fourth\:Vertex \:of\:Parallelogram \:is\:\bf{(-2,1)}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Attachments:
Similar questions