Math, asked by shahkriti46, 15 days ago

Find from first principle the derivative of sinx^2 ? step by step explanation​

Answers

Answered by maanvikJ
0
Answer
First principle of differentiation :
dx
dy

=lim
δx→0


δx
f(x+δx)−f(x)



Here f(x)=sinx

⇒f(x+δx)=sin(x+δx)

⇒f(x+δx)−f(x)=sin(x+δx)−sinx

We know that sinC−sinD=2cos(
2
C+D

)sin(
2
C−D

)

⇒f(x+δx)−f(x)=2cos(
2
x+δx+x

)sin(
2
δx

)


dx
dy

=lim
δx→0


δx
2cos(x+
2
δx

)sin(
2
δx

)




dx
dy

=lim
δx→0

cos(x+
2
δx

)
2
δx


sin(
2
δx

)




dx
d(sinx)

=cosx as lim
x→0


x
sinx

=1
Please mark as Brainliest.
Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = sin {x}^{2}

So,

\rm :\longmapsto\:f(x + h) = sin {(x + h)}^{2}

Using definition of First Principle, we have

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\tt \dfrac{f(x + h) - f(x)}{h}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}\tt \dfrac{sin {(x + h)}^{2}  - sin {x}^{2} }{h}

We know,

\boxed{ \bf{ \: sinx - siny = 2cos\bigg(\dfrac{x + y}{2} \bigg) sin\bigg(\dfrac{x - y}{2} \bigg)}}

So, using this identity we have

\rm \: = \:\displaystyle\lim_{h \to 0}\tt \dfrac{2cos\bigg(\dfrac{ {(x + h)}^{2}  +  {x}^{2} }{2} \bigg)sin\bigg(\dfrac{ {(x + h)}^{2}  -  {x}^{2} }{2} \bigg)}{h}

\rm \:=2\displaystyle\lim_{h \to 0}\tt cos\bigg(\dfrac{ {(x + h)}^{2} +  {x}^{2} }{2} \bigg) \times \displaystyle\lim_{h \to 0}\tt \dfrac{sin\bigg(\dfrac{ {(x + h)}^{2} -  {x}^{2}  }{2} \bigg)}{h}

\rm \: =2cos\bigg(\dfrac{ {x}^{2}  +  {x}^{2} }{2} \bigg) \times \displaystyle\lim_{h \to 0}\tt \dfrac{sin\bigg(\dfrac{ {x}^{2} +  {h}^{2}  + 2hx -  {x}^{2}}{2} \bigg)}{h}

\rm \: =2cos\bigg(\dfrac{2{x}^{2}}{2} \bigg) \times \displaystyle\lim_{h \to 0}\tt \dfrac{sin\bigg(\dfrac{{h}^{2}  + 2hx }{2} \bigg)}{h}

\rm \:=2cos {x}^{2} \times \displaystyle\lim_{h \to 0}\tt \dfrac{sin\bigg(\dfrac{h(h + 2x)}{2} \bigg)}{h}

\rm \:=2cos {x}^{2} \times \displaystyle\lim_{h \to 0}\tt \dfrac{sin\bigg(\dfrac{h(h + 2x)}{2} \bigg)}{h\bigg(\dfrac{h + 2x}{2} \bigg)} \times \bigg(\dfrac{h + 2x}{2} \bigg)

can be rewritten as

\rm \:=2cos {x}^{2} \times \displaystyle\lim_{h \to 0}\tt \dfrac{sin\bigg(\dfrac{h(h + 2x)}{2} \bigg)}{h\bigg(\dfrac{h + 2x}{2} \bigg)} \times \displaystyle\lim_{h \to 0}\tt \bigg(\dfrac{h + 2x}{2} \bigg)

We know,

\boxed{ \bf{ \: \displaystyle\lim_{h \to 0}\tt  \frac{sinh}{h} = 1}}

So, using this identity, we get

\rm \:  =2cos {x}^{2} \times \bigg(\dfrac{2x}{2} \bigg)

\rm \:  =  2x \: cos {x}^{2}

Hence,

We concluded that,

\boxed{ \bf{ \: \dfrac{d}{dx} \: sin {x}^{2}  \:  =  \: 2x \: cos {x}^{2}}}

Additional Information :-

\boxed{ \bf{ \: \displaystyle\lim_{h \to 0}\tt  \frac{tanh}{h} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{h \to 0}\tt  \frac{tan {}^{ - 1} h}{h} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{h \to 0}\tt  \frac{sin {}^{ - 1} h}{h} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{h \to 0}\tt  \frac{log(1 + h)}{h} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{h \to 0}\tt  \frac{ {e}^{h}  - 1}{h} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{h \to 0}\tt  \frac{ {a}^{h}  - 1}{h} = loga}}

Similar questions