Find general and particular solution of dy/dx+10y=15 and y(0) = 0
Answers
Answered by
13
To find the general particular solution dy/dt = 15 - 10y
dy/(15-10y) = dt -- now integrate
(-1/10)*ln[15 - 10y] = t + c
ln[15 - 10y] = -10t + c
15 - 10y = c*e^(-10t)
10y = 15 - c*e^(-10t)
y = 1.5 -(c/10)e^(-10t)
If t = 0, then y = 0 = 1.5 - c/10 --> c = 15
therefore y = 1.5[1 - e^(-10t)]
check:
y = 1.5[1 - e^-10t)]
dy = 1.5[10e^(-10t)] dt = 15e^(-10t) dt
dy/dt = 15e^(-10t)
dy/dt + 10y = 15e^(-10t) + 15[1 - e^(-10t)]
= 15e^(-10t) + 15 - 15e^(-10t) = 1
Similar questions
Business Studies,
6 months ago
Math,
6 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago
History,
1 year ago