Math, asked by aribaANNIE940, 1 year ago

Find general solution (√3+1)cos x + (√3-1) sin x=2

Answers

Answered by chandrikajadala
55
Hope this answer helps you.
Attachments:
Answered by pinquancaro
38

Answer:

x=2n\pi\pm\frac{\pi}{4}+\frac{\pi}{12}

Step-by-step explanation:

Given : Expression  (\sqrt3+1)\cos x+(\sqrt3-1)\sin x=2

To find : The general solution of the expression ?

Solution :

Let (\sqrt3+1)=r\cos \alpha

(\sqrt3-1)=r\sin\alpha

Substitute in expression,

r\cos \alpha\cos x+r\sin\alpha\sin x=2

r(\cos \alpha\cos x+\sin\alpha\sin x)=2

r(\cos(x-\alpha)=2

\cos(x-\alpha=\frac{2}{r}

We know,

r=\sqrt{(\sqrt3-1)^2+(\sqrt3+1)^2}\\r=\sqrt{4-2\sqrt3+4+2\sqrt3}\\r=\sqrt8\\r=2\sqrt2

\cos(x-\alpha=\frac{2}{2\sqrt2}

\cos(x-\alpha=\frac{1}{\sqrt2}

\cos(x-\alpha=\cos(\frac{\pi}{4})

(x-\alpha)=2n\pi\pm\frac{\pi}{4}

Now, \tan\alpha=\frac{\sqrt3-1}{\sqrt3+1}

\tan\alpha=\tan(\frac{\pi}{3}-\frac{\pi}{4}

\alpha=\frac{\pi}{12}

Substitute,

(x-\alpha)=2n\pi\pm\frac{\pi}{4}

x-\frac{\pi}{12}=2n\pi\pm\frac{\pi}{4}

x=2n\pi\pm\frac{\pi}{4}+\frac{\pi}{12}

Therefore, The general solution is x=2n\pi\pm\frac{\pi}{4}+\frac{\pi}{12}

Similar questions