Math, asked by kumaranmol1909, 1 month ago

Find general solution of

sin^2theta • sectheta+√3 tantheta= 0​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \sin^{2} ( \theta) . \sec( \theta)  +  \sqrt{3}  \tan( \theta)  = 0 \\

 \implies \sin ( \theta) . \sin( \theta) .  \frac{1}{ \cos( \theta)}  +  \sqrt{3}  \tan( \theta)  = 0 \\

 \implies \sin ( \theta) . \frac{ \sin( \theta) }{ \cos( \theta)}  +  \sqrt{3}  \tan( \theta)  = 0 \\

 \implies \sin ( \theta) .  \tan( \theta)  +  \sqrt{3}  \tan( \theta)  = 0 \\

 \implies   \tan( \theta) \{ \sin( \theta)   +  \sqrt{3} \}= 0 \\

Either    \tan( \theta)=0\\ or  \{ \sin( \theta)   +  \sqrt{3} \}= 0\\

Since, -1\leqslant \sin(\theta) \leqslant1, so,  \sin(\theta) ≠ -\sqrt{3}

Then,

    \tan( \theta)= 0 \\

    \implies  \theta= n \pi \\

Where, n\in\:I

Answered by rutujakondamangal
0

Answer:

hey thanks for solving the difficult questions

Similar questions