Math, asked by mansirahore67, 9 hours ago

find general solutions for sin3θ+sin5θ=sin8θ​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:sin3\theta  + sin5\theta  = sin8\theta

can be rewritten as

\rm :\longmapsto\:sin5\theta  + sin3\theta  - sin8\theta  = 0

We know,

\boxed{\tt{ sinx + siny  = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}} \\

and

\boxed{\tt{ sin2x \:  =  \: 2 \: sinx \: cosx \: }} \\

So, using this identity, we get

\rm :\longmapsto\:2sin\bigg[\dfrac{5\theta  + 3\theta }{2} \bigg]cos\bigg[\dfrac{5\theta  - 3\theta }{2} \bigg] - 2sin4\theta cos4\theta  = 0 \\

\rm :\longmapsto\:2sin\bigg[\dfrac{8\theta }{2} \bigg]cos\bigg[\dfrac{2\theta}{2} \bigg] - 2sin4\theta cos4\theta  = 0 \\

\rm :\longmapsto\:2sin4\theta  \: cos\theta  \:  -  \: 2sin4\theta  \: cos4\theta  = 0

\rm :\longmapsto\:2sin4\theta (cos\theta  - cos4\theta ) = 0

We know,

\boxed{\tt{ cosx - cosy = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{y - x}{2} \bigg]}} \\

So, using this identity, we get

\rm :\longmapsto\:2sin4\theta  \: \bigg(2sin\bigg[\dfrac{\theta  + 4\theta }{2} \bigg]sin\bigg[\dfrac{4\theta  - \theta }{2} \bigg] \bigg)  = 0 \\

\rm :\longmapsto\:4sin4\theta  \: sin\bigg[\dfrac{5\theta }{2} \bigg]sin\bigg[\dfrac{3\theta}{2}\bigg] = 0 \\

We know,

\boxed{\tt{ \sf sinx = 0 \:  \: \rm\implies \:  \sf x = n\pi  \: \forall \: n \in \: Z}} \\

So, using this result, we get

\boxed{\tt{ \sf sin4\theta  = 0 \:  \: \rm\implies \:  \sf 4\theta  = n\pi\rm\implies \:\theta  =  \frac{n\pi}{4}   \: \forall \: n \in \: Z}} \\

OR

\boxed{\tt{ \sf sin\dfrac{5\theta }{2}   = 0 \:  \: \rm\implies \:  \sf \dfrac{5\theta }{2}  = n\pi\rm\implies \:\theta  =  \frac{2n\pi}{5}   \: \forall \: n \in \: Z}} \\

OR

\boxed{\tt{ \sf sin\dfrac{3\theta }{2}   = 0 \:  \: \rm\implies \:  \sf \dfrac{3\theta }{2}  = n\pi\rm\implies \:\theta  =  \frac{2n\pi}{3}   \: \forall \: n \in \: Z}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions