Math, asked by aadityasingh4567, 11 months ago

find
Geometric Mean between 3/2 and 27/2​

Answers

Answered by LeonardEuler
1

Hello !!

The formula for calculate the geometric mean is.

\mathsf{GM=\sqrt[n]{\displaystyle\left(\prod_{i=0}^{n}~a_{i}\right)}=\sqrt[n]{a_{1}\times~a_{2}...a_{n}}}

Now, you put the informations of the statement in the formula.

\mathsf{GM=\sqrt[n]{\displaystyle\left(\prod_{i=0}^{n}~a_{i}\right)}=\sqrt[n]{a_{1}\times~a_{2}...a_{n}}} \\\\\\ \mathsf{GM=\sqrt[2]{\left(\frac{3}{2}\right)\times\left(\frac{27}{2}\right)}} \\\\\\ \mathsf{GM=\sqrt[2]{\left(\frac{81}{4}\right)}} \\\\\\ \mathsf{GM=\dfrac{9}{2}} \\\\\\ \boxed{\mathsf{\textbf{GM=4.5}}}

Therefore, the geometric mean is 4.5.

I hope I have collaborated !

Answered by Swetha03K
0

Hope this one is easier..

Attachments:
Similar questions