Find half range sine series of the function f(x) = x(π-x) in o
Answers
Answered by
2
Answer:
Given f(x)=πx−x2(0,π)
Half range sine series is given by
bn=2l∫0πf(x)sinnxdx
bn=2π∫0πf(x)sinnxdx
bn=2π∫0π(πx−x2)sinnxdx
bn=2π[(πx−x2)(−cosnxn)−(π−2x)(−sinxn)+(−2)(cosnxn3)]π0
∴bn=2π[(0−0+(−2cosnπn3)−0+0+2n3)]
bn=2π(−2cosnπn3)+2n3
bn=2π[4n3]=8πn3 if n is odd
= 0 if n is ev
Answered by
2
Answer:
8/π [1 + 1/27 + 1/125 + 1/343 +......]
Attachments:
Similar questions