Math, asked by Anonymous, 3 months ago

Find HCF of (4x³ + 3x²y - 9xy² + 2y³) and (x² + xy - 2y²)
(1) (x + 2y)(x - y)
(2) (x - 2y)(x + y)
(3) (x - 2y)
(4) None of these

[RRB Kolkata, 2003]​

Answers

Answered by ZAYNN
17

Answer:

HCF : Highest Common Factor of the given terms, in simple words those terms which are common factor of all the given terms.

So we will Factorise both terms.

Factorisation of First Term :

⇒ (4x³ + 3x²y - 9xy² + 2y³)

⇒ 4x³ + (7 - 4)x²y - (7 + 2)xy² + 2y³

⇒ 4x³ + 7x²y - 4x²y - 7xy² - 2xy² + 2y³

⇒ x²(4x + 7y) - xy(4x + 7y) - 2y²(x - y)

⇒ (x² - xy)(4x + 7y) - 2y²(x - y)

⇒ x(x - y)(4x + 7y) - 2y²(x - y)

⇒ (x - y)[x(4x + 7y) - 2y²]

⇒ (x - y)[4x² + 7xy - 2y²]

⇒ (x - y)[4x² + (8 - 1)xy - 2y²]

⇒ (x - y)[4x² + 8xy - xy - 2y²]

⇒ (x - y)[4x(x + 2y) - y(x + 2y)]

⇒ (x - y)(x + 2y)(4x - y)

Factorisation of Second Term :

⇒ (x² + xy - 2y²)

⇒ x² + (2 - 1)xy - 2y²

⇒ x² + 2xy - xy - 2y²

⇒ x(x + 2y) - y(x + 2y)

⇒ (x - y)(x + 2y)

⠀⠀⠀⠀⠀───────────────

HCF of the given terms :

⇢ HCF = Common Factor

  • Common factor in both terms are (x - y) and (x + 2y)

HCF = (x + 2y)(x - y)

Correct option is (1) (x + 2y)(x - y).

Answered by Anonymous
15

AnswEr-:

  • \underline {\boxed{\mathrm { The\:common\:\:factord\:in\:both\:terms  \:are\:-:\bf{\red{(x-y)(x+2y)}}}}}

  • \underline {\boxed{\mathrm { The\:Option \bf{\red{1}}\:or\:\bf{\red{(x-y)(x+2y)}\:is\:correct}}}}

Explanation-:

  • H.C.F or ( Highest Common Factor ) -: We have to find H.C.F of the given terms or the Common Factor of the Given terms .

There are two terms -:

  1. (4x³ + 3x²y - 9xy² + 2y³)
  2. (x² + xy - 2y²)

_____________________________________________

  • Factorising first term -:

  • \mathrm {First \:Term\:-: \:( 4x^{3} + 3x^{2}y - 9xy^{2} + 2y^{3})}

  • :\implies{\mathrm { \:( 4x^{3} + 3x^{2}y - 9xy^{2} + 2y^{3})}}

  • \sf{\dag{ By\:Using \:Sum-\:Product \:pattern-:}}

  • :\implies{\mathrm { \: 4x^{3} + \purple {3x^{2}y} - \purple {9xy^{2}} + 2y^{3})}}

  • :\implies{\mathrm { \: 4x^{3} + \purple {(7-4)x^{2}y} - \purple {(7+2)xy^{2}} + 2y^{3})}}

  • :\implies{\mathrm { \:( 4x^{3} + \purple {7x^{2}y-4x^{2}y} - \purple {7xy^{2}+2xy^{2}} + 2y^{3}}}

  • \sf{ Now\:Finding \:Common-\:Factors \:from\:each\:term-:}

  • :\implies{\mathrm { \: 4x^{3} + 7x^{2}y-4x^{2}y - 7xy^{2}+2xy^{2} + 2y^{3}}}

  • :\implies{\mathrm { \: \purple {4x^{2} + 7x^{2}y} \red{-4x^{2}y - 7xy^{2}}\pink{+2xy^{2} + 2y^{3}}}}

  • :\implies{\mathrm { \: \purple {x^{2}( 4x + 7y)} \red{-xy(4x + 7y)}\pink{+2y^{2} ( x-y)}}}

  • :\implies{\mathrm { \: \purple {(x^{2}-xy)} \red{(4x + 7y)}\pink{-2y^{2} ( x-y)}}}

  • :\implies{\mathrm { \: \purple {(x^{2}-xy)} (4x + 7y)-2y^{2} \purple{( x-y)}}}

  • :\implies{\mathrm { \: \purple {(x^{2}-xy)} (4x + 7y)-2y^{2} ( x-y)}}

  • :\implies{\mathrm { \: \purple {x(x-y)} (4x + 7y)-2y^{2} ( x-y)}}

  • :\implies{\mathrm { \: x\purple{(x-y)} (4x + 7y)-2y^{2} \purple{( x-y)}}}

  • :\implies{\mathrm { \: \purple {(x-y)} \left\{x(4x + 7y)-2y^{2} \right\}}}

  • :\implies{\mathrm { \: (x-y) \purple {\left\{x(4x + 7y)-2y^{2} \right\}}}}

  • :\implies{\mathrm { \: (x-y) \purple {\left\{4x^{2} + 7xy-2y^{2} \right\}}}}

  • :\implies{\mathrm { \: (x-y) \left\{4x^{2} + 7xy-2y^{2} \right\}}}

  • \sf{\dag{ By\:Using \:Sum-\:Product \:pattern\:in\:new\:term-:}}

  • :\implies{\mathrm { \: (x-y) \left\{4x^{2} \purple{+ 7xy}-2y^{2} \right\}}}

  • :\implies{\mathrm { \: (x-y) \left\{4x^{2} \purple{+ (8-1)xy}-2y^{2} \right\}}}

  • :\implies{\mathrm { \: (x-y) \left\{4x^{2} \purple{+ 8xy-xy}-2y^{2} \right\}}}

  • \sf{ Now\:Finding \:Common-\:Factors \:from\:each\:term-:}

  • :\implies{\mathrm { \: (x-y) \left\{ \blue{4x^{2} + 8xy}\purple{-xy-2y^{2}} \right\}}}

  • :\implies{\mathrm { \: (x-y) \left\{\blue{4x(x+2y)}\purple{-y(x+2y)} \right\}}}

  • \sf{ Now,\:Rewrite \:the\:factored\:term\:\:-:}

  • :\implies{\mathrm { \: \red{ (x-y)}\blue{(4x-y)}\purple{(x+2y)} }}

Therefore,

  • \underline {\boxed{\mathrm { \: Factors \:are\:-:(x-y)(4x-y)(x+2y)}}}

_________________________________________________

  • Factorising second term -:

  • \mathrm {Second \:Term\:-: \:(  x^{2} + 2xy - 2y^{2} )}

  • :\implies{\mathrm { \:( x^{2} + 2xy -  2y^{2})}}

  • \sf{\dag{ By\:Using \:Sum-\:Product \:pattern-:}}

  • :\implies{\mathrm { \: x^{2} + \purple {2xy} -  2y^{2}}}

  • :\implies{\mathrm { \: x^{2} + \purple {(2-1)xy} -  2y^{2}}}

  • :\implies{\mathrm { \: x^{2} + \purple {2xy-xy} -  2y^{2}}}

  • \sf{ Now\:Finding \:Common-\:Factors \:from\:each\:term-:}

  • :\implies{\mathrm { \:\purple {x^{2} + 2xy} \red{-xy -  2y^{2}}}}

  • :\implies{\mathrm { \:\purple {x(x  + 2y)} \red{-y(x +  2y)}}}

  • \sf{ Now,\:Rewrite \:the\:factored\:term\:\:-:}

  • :\implies{\mathrm { \:\purple {(x  + 2y)} \red{(x - y)}}}

Therefore,

  • \underline {\boxed{\mathrm { \: Factors \:are\:-:(x-y)(x+2y)}}}

_________________________________________________________

  • H.C.F is also known as Common Factor

Therefore,

  • :\implies{\mathrm { \: Factors \:of\:1st\:term \:-: \purple{(x-y)}(4x-y)\purple{(x+2y)} }}

  • :\implies{\mathrm { \: Factors \:of\:2nd\:term \:-: \purple{(x-y)(x+2y)} }}

Hence ,

  • \underline {\boxed{\mathrm { The\:common\:\:factord\:in\:both\:terms  \:are\:-:\bf{\red{(x-y)(x+2y)}}}}}

  • \underline {\boxed{\mathrm { The\:Option \bf{\red{1}}\:or\:\bf{\red{(x-y)(x+2y)}}\:is\:correct}}}

_________________________________________________________

Similar questions