Math, asked by swapnilkamblemsd7, 2 months ago

find height of trapezium whose parallel sides are 7cm and 9cm and area is 24sq cm​

Answers

Answered by ItzDαrkHσrsє
24

GIVEN:

  • Parallel sides of trapezium = 7cm and 9cm

  • Area of the trapezium = 24sq.cm

SOLUTION:

As we know that,

\star \: {\underline{\boxed{\mathcal{\pmb{\quad Area  \: of  \: trapezium =  \frac{1}{2}  \:  \times sum  \: of \:  it's \:  parallel  \: sides \times distance  \: between  \: parallel  \: sides}}}}}

Substituting values,

\implies\sf{24 =  \frac{1}{2}  \times (7 + 9) \times h} \\  \\ \implies\sf{24 =  \frac{1}{2}  \times 16 \times h} \\  \\ \implies\sf{24 = 1 \times 8 \times h} \\  \\ \implies\sf{24 = 8h} \\  \\ \implies\sf{h = \frac{\cancel{24}}{\cancel{8}}} \\  \\ \implies{\boxed{\sf{\gray{h = 3 \: \bigstar}}}}

Hence,

  • The height of the trapezium is 3cm.
Answered by ItzWhiteStorm
44

❍ Let the height of trapezium be x cm respectively.

__________________

\underline{\bigstar\boldsymbol{According\;to\;the\;given\;Question:}}

  • Parallel sides of trapezium is 7 cm and 9cm.
  • Area of trapezium is 24 sq.cm.

 \\  \underline{ \frak{ \dag \: As \: we \: know \: that : }} \\  \\  \star\underline{\boxed{\sf{Area\;of\;trapezium\;=\;\frac{1}{2}\times(a + b)h}}} \\

Applying the values,

\longrightarrow{\sf{24 =  \frac{1}{2} \times (7 + 9) \times x}} \\  \\ \longrightarrow\sf{24 =  \frac{1}{2} \times 16 \times x} \\  \\ \longrightarrow\sf{24 =  \frac{16}{2} \times x} \\  \\ \longrightarrow\sf{24 = 8 \times x} \\  \\ \longrightarrow\sf{x =  \frac{24}{8}} \\  \\ \longrightarrow\boxed{\sf{x = 3}}\star\\  \\  \\  \\  \sf{\therefore Hence,The  \: height  \: of \:  trapezium  \: is  \: 3 cm.}

Similar questions