Math, asked by jollyshanies82, 20 days ago



find how to solve 12√(x^4)^1/3​

Answers

Answered by 270149
0

Answer:

\red { Simplification\: of \: \sqrt[12] {(x^{4})^{\frac{1}{3}}}} < /p > < p > =\green {\sqrt[9]{x}}Simplificationof12(x4)31</p><p>=9x

Step-by-step explanation:

\red { simplification \: of \: \sqrt[12] {(x^{4})^{\frac{1}{3}}}}simplificationof12(x4)31

= \sqrt[12] x^{\frac{4}{3}}=12x34

\boxed { \pink { (a^{m})^{n} = a^{m\times n}}}(am)n=am×n

= \green { x^{\frac{4}{3\times 12}}}=x3×124

= \green { x^{\frac{1}{3\times 3}}}=x3×31

= \green {x^{\frac{1}{9}}}=x91

= \green {\sqrt[9]{x}}=9x

Therefore.,

\red { simplification \: of \: \sqrt[12] {(x^{4})^{\frac{1}{3}}}} < /p > < p > =\green {\sqrt[9]{x}}simplificationof12(x4)31</p><p>=9x

Answered by BeginnerinBrainly
2

Answer:

If it helps mark me as brainliest.

Step-by-step explanation:

This is not an equation. So it can only be simplified.

12 { \sqrt{ {x}^{4} } }^{ \frac{1}{3} }  \\  = 12 { ({x}^{2} )}^{ \frac{1}{3} }  \\  = 12 \sqrt[3]{ {x}^{2} }

Similar questions