Math, asked by praveen1221, 1 year ago

Find if limits exists..

a)lim x tends to 3 .. (2x+ |x-3|)
b) g(x) = x^2+x-6 / | x-2 |

Help me with this.. pls explain modulus in these sums are confusing.

Answers

Answered by siddhartharao77
2

(a)

Given:\lim_{x \to 3} (2x + |x - 3|)

=>\lim_{x \to 3} (2x + x - 3)

=>\lim_{x \to 3} (3x - 3)

= > 3(3) - 3

= > 9 - 3

= > 6.

-----------------------------------------------------------------------------------------------------------------

(b)

Given:\lim_{x \to 3} \frac{x^2 + x - 6}{|x - 2|}

=>\lim_{x \to 3} \frac{x^2 + x - 6}{x - 2}

=>\frac{3^2 + 3 - 6}{3 - 2}

=>\frac{9 + 3 - 6}{1}

=>\frac{6}{1}

=> 6.

----------------------------------------------------------------------------------------------------------------


Hope it helps!


praveen1221: Thank you so much
siddhartharao77: welcome!
Answered by ViratKohli36183
6

see \: the \: above \: attachments  \\ you \: get \: the \: answer. \\  \\ hope \: it \: helps...
Plese Mark As Brainliest
Attachments:
Similar questions