find if the second polynomial is a factor of the first polynomial using long division methods a= x'2-4x+8,x-2 b = 2x'3+x'2-3,2x+3 C=8x'4+10x'3-5x'2-4x+1,2x'2+x-1
Answers
:
1
Simplify —
2
Equation at the end of step
1
:
1
((((((8•(x4))+(10•(x3)))-(5•(x2)))-4x)+(—•x2))+x)-1
2
STEP
2
:
Equation at the end of step 2
x2
((((((8•(x4))+(10•(x3)))-(5•(x2)))-4x)+——)+x)-1
2
STEP
3
:
Equation at the end of step
3
:
x2
((((((8•(x4))+(10•(x3)))-5x2)-4x)+——)+x)-1
2
STEP
4
:
Equation at the end of step
4
:
x2
((((((8•(x4))+(2•5x3))-5x2)-4x)+——)+x)-1
2
STEP
5
:
Equation at the end of step
5
:
x2
(((((23x4+(2•5x3))-5x2)-4x)+——)+x)-1
2
STEP
6
:
Rewriting the whole as an Equivalent Fraction
6.1 Adding a fraction to a whole
Rewrite the whole as a fraction using 2 as the denominator :
8x4 + 10x3 - 5x2 - 4x (8x4 + 10x3 - 5x2 - 4x) • 2
8x4 + 10x3 - 5x2 - 4x = ————————————————————— = ———————————————————————————
1 2
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
STEP
7
:
Pulling out like terms
7.1 Pull out like factors :
8x4 + 10x3 - 5x2 - 4x =
x • (8x3 + 10x2 - 5x - 4)
Checking for a perfect cube :
7.2 8x3 + 10x2 - 5x - 4 is not a perfect cube
Trying to factor by pulling out :
7.3 Factoring: 8x3 + 10x2 - 5x - 4
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: -5x - 4
Group 2: 8x3 + 10x2
Pull out from each group separately :
Group 1: (5x + 4) • (-1)
Group 2: (4x + 5) • (2x2)
Bad news !! Factoring by pulling out fails :
The groups have no common factor and can not be added up to form a multiplication.
Your first answer is that
Step-by-step explanation:
1= NO
2=YES
3=NO