Math, asked by s1252anurag11309, 1 month ago

find if x+ 1/x=3 is a perfect square or not and please tell the process​

Answers

Answered by IIBandookbaazII
2

(X+1)(X+2)(X+3)(X+k)+1=(x^2+3x+2) × (x^2+ 3x+kx+3k) +1=x^4+3x^3+kx^3 +3kx^2 +3x^3+9x^2+3kx^2+9kx +2x^2+6x+2kx+6k +1 =x^4+x^3(3+k+3)+x^2(3k+9+3k+2)+x(9k+2k+6)+(6k+1)= x^4+(k+6)x^3+(6k+11)x^2+(11k+6)x+(6k+1)=(x^2+ax+b)^2 say , where 2a=k+6, a^2+2b=6k+11, 2ab=11k+6, b^2=6k+1 ,

Solving for integral values gives us k = 4, b = 5, a = 5 as foollows.

2ab = 11k + 6, 2a = k + 6 gives us

b = 11k + 6 / k + 6 &

b^2 = 6k + 1 gives us eqn k^2 —8k + 16 = 0

So k = 4

With this value of k , the given expression is a perfect square for any value of x

Now Our expression is (x+1)(x+2)(x+3)(x+4)+1 & we claim that this is perfect square for any value of x with the square root as, x^2+5x+5

Answered by Anonymous
0

Step-by-step explanation:

{\red{\bf{GIVEN:-}}} \\ {\gray{\bf{x -  \frac{1}{2}  = 5}}} \\  \\ {\blue{\bf{so \: squaring \: both \: sides \: :   ({x  -  \frac{1}{2}) =  {25} }}}} \\ {\pink{\bf{ {x}^{2} +  \ { \frac{1}{2} }^{2}  - 2x \times  \frac{1}{x}   = 25 }}} \\ {\green{\bf{ {x}^{2}  +   \frac{1}{ {x}^{2} }   = 25 + 2}}}

{\purple{\bf{ {x}^{2}  +  \frac{1}{ {x}^{2} = 27 } }}}

HOPE IT HELPS ✨✨

Similar questions