Math, asked by tesswaver1, 5 months ago

find in ascending powers of x the first three terms of:
(2+x)(1+x)^8​

Answers

Answered by vijisquare
0

Answer: S=(x  

1/2

+  

2x  

1/4

 

1

​  

)  

n

 

   =∑  

n

C  

r

​  

.(x  

1/2

)  

n−r

.(  

2x  

1/4

 

1

​  

)  

r

 

   =∑  

n

C  

r

​  

.(  

2

1

​  

)  

r

.x  

(n−r)/2

.x  

−r/4

 

⇒S=∑  

r=0

n

​  

 

n

C  

r

​  

(  

2

1

​  

)  

r

x  

(2n−3r)/4

 

We have to expand in decreasing powers of x.

∴S=  

n

C  

0

​  

(  

2

1

​  

)  

0

x  

n/2

+  

n

C  

1

​  

(  

2

1

​  

)  

1

x  

(2n−3)/4

+  

n

C  

2

​  

(  

2

1

​  

)  

2

x  

(2n−6)/4

+......

First three terms form an A.P.

=  

n

C  

0

​  

,  

n

C  

1

​  

(  

2

1

​  

)&  

n

C  

2

​  

(  

2

1

​  

)  

2

 from an A.P.

⇒  

n

C  

0

​  

+  

n

C  

2

​  

(  

2

1

​  

)  

2

=2(  

n

C  

1

​  

).  

2

1

​  

 

⇒1+  

2

n(n−1)

​  

×  

4

1

​  

=n

⇒(n−1)(n−8)=0

n

=1 (∵ there are at least 3 term)

⇒n=8

∴S=∑  

r=0

8

​  

 

8

C  

r

​  

(  

2

1

​  

)  

2

x  

4−3r/4

 

⇒4−  

4

3r

​  

=K;      Where K∈I

Now of such values of r ranging from 0 to 8 are :→0,4 and 8

∴ There will be three such terms.

Hence, the answer is 3.

Answered By

toppr

25 Views

How satisfied are y

Step-by-step explanation:

Similar questions