find integral zeroes of polynomial x³+3x²-x-3
Answers
Answer:
The integral zeroes are : -1 , 1 , 3
Step-by-step explanation:
Given :
To find the integral zeroes of the polynomial :
Solution :
⇒
⇒
⇒
⇒
⇒
If their product equals 0,.
Atleast one of the factors must be 0,
i.e.,
Either (or) (or)
⇒
∴ The integral zeroes are : -1 , 1 , 3
To find the integral zeroes of the polynomial :
x^3 + 3x^2 - x - 3x3+3x2−x−3
Solution :
x^3 + 3x^2 - x - 3x3+3x2−x−3
⇒ x^2(x + 3) - 1(x + 3)x2(x+3)−1(x+3)
⇒ (x^2-1)(x+3)(x2−1)(x+3)
⇒ (x^2+x - x-1)(x+3)(x2+x−x−1)(x+3)
⇒ (x(x+1) - (x+1))(x+3)(x(x+1)−(x+1))(x+3)
⇒(x+1)(x-1)(x+3)(x+1)(x−1)(x+3)
If their product equals 0,.
Atleast one of the factors must be 0,
i.e.,
(x+1)(x-1)(x+3)=0(x+1)(x−1)(x+3)=0
Either (x+1)=0(x+1)=0 (or) (x-1)=0(x−1)=0 (or) (x+3)=0(x+3)=0
⇒ x = -1 , 1 , 3x=−1,1,3
∴ The integral zeroes are : -1 , 1 , 3