Math, asked by ruhir23, 5 months ago

find integrat x^2 +1/(x^2 +2)(x^2 +3)​

Answers

Answered by BrainlyPopularman
13

GIVEN :

• A function –

  \\ \implies\bf\dfrac{x^2 +1}{(x^2 +2)(x^2 +3)} \\

TO FIND :

• Integration of function = ?

SOLUTION :

• Let –

  \\ \implies\bf  I = \int\dfrac{x^2 +1}{(x^2 +2)(x^2 +3)}dx\\

• We should write this as –

  \\ \implies\bf  I = \int \bigg[\dfrac{2}{(x^2 +3)} -  \dfrac{1}{(x^2 +2)} \bigg]dx\\

  \\ \implies\bf  I =2\int\dfrac{1}{(x^2 +3)}dx -\int\dfrac{1}{(x^2 +2)}dx\\

  \\ \implies\bf I =2I_1-I_2 \:  \:  \:  \:  \:  \:  \:  \:  -  -  - eq.(1)\\

• Now Let's solve –

  \\ \implies\bf I_1 =\int\dfrac{1}{(x^2 +3)}dx\\

• put x = t√3 –

  \\ \implies\bf dx = dt \sqrt{3}\\

• So that –

  \\ \implies\bf I_1 =\int\dfrac{1}{ \{(t \sqrt{3})^2 +3 \}}(dt \sqrt{3})\\

  \\ \implies\bf I_1 =\int\dfrac{1}{ \{3(t)^2 +3 \}}(dt \sqrt{3})\\

  \\ \implies\bf I_1 = \dfrac{1}{ \sqrt{3} } \int\dfrac{1}{t^2 +1}dt\\

  \\ \implies\bf I_1 = \dfrac{1}{ \sqrt{3} } \tan^{ - 1} (t) \\

• Now replace 't' –

  \\ \implies\bf I_1 = \dfrac{1}{ \sqrt{3} } \tan^{ - 1} \bigg(\dfrac{x}{ \sqrt{3} } \bigg) \\

• And –

  \\ \implies\bf I_2 =\int\dfrac{1}{(x^2 +2)}dx\\

• put x = t√2 –

  \\ \implies\bf dx = dt \sqrt{2}\\

• So that –

  \\ \implies\bf I_2 =\int\dfrac{1}{ \{(t \sqrt{2})^2 +2 \}}(dt \sqrt{2})\\

  \\ \implies\bf I_2 =\int\dfrac{1}{ \{2(t)^2 +2\}}(dt \sqrt{2})\\

  \\ \implies\bf I_2 = \dfrac{1}{ \sqrt{2} } \int\dfrac{1}{t^2 +1}dt\\

  \\ \implies\bf I_2 = \dfrac{1}{ \sqrt{2} } \tan^{ - 1} (t) \\

• Now replace 't' –

  \\ \implies\bf I_2 = \dfrac{1}{ \sqrt{2} } \tan^{ - 1} \bigg(\dfrac{x}{ \sqrt{2} } \bigg) \\

• Put the values of  \tt I_1 \:\: and \:\: I_2 in eq.(1) –

  \\ \implies \large{ \boxed{\bf I =\dfrac{2}{ \sqrt{3} } \tan^{ - 1} \bigg(\dfrac{x}{ \sqrt{3} } \bigg)- \dfrac{1}{ \sqrt{2} } \tan^{ - 1} \bigg(\dfrac{x}{ \sqrt{2} } \bigg) + c}}\\

Similar questions