Math, asked by talpadadilip417, 7 hours ago

find integrated.:\boxed[\mathtt\red{\int\left(a^{x}+a^{-x}\right)^{3} d x}}

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\mathtt{ \displaystyle\int\left(a^{x}+a^{-x}\right)^{3} d x}

We know that

 \purple{\boxed{\tt{  {(x + y)}^{3} =  {x}^{3} +  {3x}^{2}y +  {3xy}^{2} +  {y}^{3}}}}

So, using this identity, we get

\rm \:  =  \: \displaystyle\int \: \bigg[ {a}^{3x} + 3{a}^{2x} {a}^{ - x} + 3{a}^{x}{a}^{ - 2x} + {a}^{ - 3x}\bigg]dx

\rm \:  =  \: \displaystyle\int \: \bigg[ {a}^{3x} + 3{a}^{x} + 3{a}^{ - x}+ {a}^{ - 3x}\bigg]dx

We know,

 \green{\boxed{\tt{ \displaystyle\int \: {a}^{mx + c}dx \:  =  \:   \frac{{a}^{mx + c}}{m \: loga} \: + d }}}

\rm \:  =  \: \dfrac{{a}^{3x}}{3 \: loga}  + 3\dfrac{{a}^{x}}{loga}  + 3\dfrac{{a}^{ - x}}{ - loga}  + \dfrac{{a}^{ - 3x}}{ - 3 \: loga}  + c

\rm \:  =  \: \dfrac{1}{3 \: loga} \: \bigg[{a}^{3x} + 9{a}^{x} - 9{a}^{ - x} - {a}^{ - 3x}\bigg] + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by HarshitJaiswal2534
1

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\mathtt{ \displaystyle\int\left(a^{x}+a^{-x}\right)^{3} d x}

We know that

 \red{\boxed{\tt{  {(x + y)}^{3} =  {x}^{3} +  {3x}^{2}y +  {3xy}^{2} +  {y}^{3}}}}

So, using this identity, we get

\rm \:  =  \: \displaystyle\int \: \bigg[ {a}^{3x} + 3{a}^{2x} {a}^{ - x} + 3{a}^{x}{a}^{ - 2x} + {a}^{ - 3x}\bigg]dx

\rm \:  =  \: \displaystyle\int \: \bigg[ {a}^{3x} + 3{a}^{x} + 3{a}^{ - x}+ {a}^{ - 3x}\bigg]dx

We know,

 \blue{\boxed{\tt{ \displaystyle\int \: {a}^{mx + c}dx \:  =  \:   \frac{{a}^{mx + c}}{m \: loga} \: + d }}}

\rm \:  =  \: \dfrac{{a}^{3x}}{3 \: loga}  + 3\dfrac{{a}^{x}}{loga}  + 3\dfrac{{a}^{ - x}}{ - loga}  + \dfrac{{a}^{ - 3x}}{ - 3 \: loga}  + c

\rm \:  =  \: \dfrac{1}{3 \: loga} \: \bigg[{a}^{3x} + 9{a}^{x} - 9{a}^{ - x} - {a}^{ - 3x}\bigg] + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions