Math, asked by Akshat456723, 1 year ago

Find integration:
∫ dx/x²-a²

Answers

Answered by sruti28
4

Answer:

1/2a log |(x-a) /(x+a) |

Answered by harendrachoubay
11

\int {\dfrac{1}{x^2-a^2} } \, dx =\dfrac{1}{2a} \log [\dfrac{x-a}{x+a}] +C

Step-by-step explanation:

We have,

\int {\dfrac{1}{x^2-a^2} } \, dx

To find, the value of \int {\dfrac{1}{x^2-a^2} } \, dx = ?

\int {\dfrac{1}{x^2-a^2} } \, dx

=\int {\dfrac{1}{(x+a)(x-a)} } \, dx

Using the identity,

a^{2} -b^{2} =(a+b)(a-b)

Multiplying numerator and denominator by 2a, we get

=\dfrac{1}{2a} \int {\dfrac{2a}{(x+a)(x-a)} } \, dx

=\dfrac{1}{2a} \int {\dfrac{(x+a)-(x-a)}{(x+a)(x-a)} } \, dx

=\dfrac{1}{2a} [\int {\dfrac{(x+a)}{(x+a)(x-a)} } \, dx-\int {\dfrac{(x-a)}{(x+a)(x-a)} } \, dx]

=\dfrac{1}{2a} [\int {\dfrac{1}{(x-a)} } \, dx-\int {\dfrac{1}{(x+a)} } \, dx]

=\dfrac{1}{2a} [\log (x-a)-\log (x+a)]+C

Where, C is called integration constant

Using the logarithm identity,

\log \dfrac{a}{b} =\log a-\log b

=\dfrac{1}{2a} [\log (x-a)-\log (x+a)]+C

=\dfrac{1}{2a} \log [\dfrac{x-a}{x+a}] +C

\int {\dfrac{1}{x^2-a^2} } \, dx =\dfrac{1}{2a} \log [\dfrac{x-a}{x+a}] +C

Similar questions