Find integration of 3x+5/(x^2 +3x-1)
Answers
Answer:
Step-by-step explanation:
∫3x+5 dx /(x^2 +3x-1)
∫3x+5 dx / x^2+3x-1/4+1/4-1
∫3x+5 dx / (x-1/2)^2 - (root 3/2 )^2
∫3x dx / (x-1/2)^2 - (root3 /2)^2 +5∫dx / (x-1/2)^2 - (root3 /2)^2
3∫x dx / (x-1/2)^2 - (root3 /2)^2 +5∫dx / (x-1/2)^2 - (root3 /2)^2
=3(∫x-1/2 dx / (x-1/2)^2 - (root3 /2)^2 +1/2∫dx / (x-1/2)^2 - (root3 /2)^2 } +5∫dx / (x-1/2)^2 - (root3 /2)^2
let (x-1/2)^2=t
2(x-1/2) dx= dt
x-1/2 dx =dt/2
therefore
∫ x-1/2 dx/ (x-1/2)^2- (root3 /2)^2
∫dt/2 / t-3/4
1/2∫dt/t-3/4
1/2ln t-3/4
ln √ t-3/4
∫ dx / (x-1/2)^2 - (root3 /2)^2
∫dx/x^2-a^2=1/2a * ln x-a/x+a
1/2*√3/2 ln x-1/2-√3 /2 / x-1/2+√3 /2
1/√3 *ln x-1/2-√3 /2 / x-1/2+√3 /2
substitute in above
3(∫x-1/2 dx / (x-1/2)^2 - (root3 /2)^2 +1/2∫dx / (x-1/2)^2 - (root3 /2)^2 } +5∫dx / (x-1/2)^2 - (root3 /2)^2
=3{ln √ t-3/4 + 1/√3 *ln x-1/2-√3 /2 / x-1/2+√3 /2 } +5/√3 *ln x-1/2-√3 /2 / x-1/2+√3 /2