Find integration of an function cos 2x minus cos alpha divided by cos x minus cos alpha whole divided
Answers
Answered by
1
Answer:
The answer is 2 sin x + x cos a + c.
Step-by-step explanation:
(cos 2x - cos 2a) / (cos x - cos a) dx
= ∫((2cos^2 x - 1) - (2cos^2 a - 1)) / (cos x - cos a) dx
= ∫(2 cos^2 x - 2 cos^2 a) / (cos x - cos a) dx
= ∫[2(cos x - cos a)(cos x + cos a)] / (cos x - cos a) dx
= ∫2(cos x + cos a) dx
= 2 sin x + x cos a + c.
Similar questions