Math, asked by rakibul8, 7 months ago

Find Integration of
∫e^(2x)dx
Please give ans as fast as possible.​

Answers

Answered by Asterinn
3

\displaystyle \int  {e}^{2x} dx

Let , 2x = t

\implies2x \:  = t

\implies2 \: dx \:  = dt

\implies\: dx\:  =  \dfrac{dt}{2}

Now put dx = dt/2 :-

\implies\displaystyle \int  {e}^{2x} dx = \displaystyle \int  {e}^{t}  \frac{dt}{2}

\implies \displaystyle \int  {e}^{t}  \frac{dt}{2}

\implies  \dfrac{1}{2} \displaystyle \int  {e}^{t}  {dt}

\implies  \dfrac{1}{2}   {e}^{t}   + c

where c is constant.

\implies  \dfrac{{e}^{t}}{2}      + c

Now put 2x= t :-

\implies  \dfrac{ {e}^{2x} }{2} + c

Answer :

 \dfrac{ {e}^{2x} }{2} + c

____________________

\large\bf\red{Learn\:More}

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

___________________

Similar questions