Math, asked by peeyush300, 8 months ago

find integration of the photo question fast

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

  \int \frac{x \: dx}{ \sqrt{x + 4} }

 =   \int \frac{(x + 4 - 4)dx}{ \sqrt{x + 4} }

 =   \int( \sqrt{x + 4}  -  \frac{4}{ \sqrt{x + 4} })dx

 =   \int \sqrt{x + 4}  \: dx - 4  \int \frac{dx}{ \sqrt{x + 4} }

 =  \frac{2}{3} (x + 4)^{ \frac{3}{2} }  - 4 \times 2 \sqrt{x + 4}  + c

 =  \frac{2}{3} (x + 4)^{ \frac{3}{2} }  - 8 \sqrt{x + 4}  + c

Similar questions