find intergral of e^sinx...
Answers
Answered by
1
To Find:
ʃ [e^sinx] dx
where, y(let)=e^sinx
★Solution★
As, ʃ[e^x] dx = e^x
Here, let, u=sinx
» y=e^u
» ʃ [e^sinx] dx = e^u÷d[sinx]/dx +C
» ʃ [e^sinx] dx = [e^sinx]÷[cosx] +C
where C ∈ R
Similar questions