Math, asked by wwwlyma298, 3 months ago

Find inverse of a matrix using partition method
1 3 3
1 4 3
1 3 4

Answers

Answered by shivanshsoni9792
0

Step-by-step explanation:

The Sahara is the world's largest desert; it extends across most of the northern part of Africa.

Answered by Rameshjangid
0

Final answer:

    \left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]

Given that: We are given

\left[\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right]

To find: We have to find inverse of given matrix using partition method.

Explanation:

  • The given matrix    

  P = \left[\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right]  

  • To find inverse of a matrix using partition method first the given matrix covert in the form of,

P=\left[\begin{array}{ccc}A&B\\C&d\end{array}\right]    

  • The inverse of the matrix,

P = P^{-1} = \left[\begin{array}{ccc}X&Y\\Z&t\end{array}\right]

Where, t = (d –CA⁻¹B)⁻¹

Y= - A⁻¹Bt

Z= - CA⁻¹t

X = A⁻¹ (I –BZ)

  • Here,

A=\left[\begin{array}{ccc}1&3\\1&4\end{array}\right]  B = \left[\begin{array}{ccc}3\\3\end{array}\right]  C = \left[\begin{array}{ccc}1&3\end{array}\right]  d = \left[\begin{array}{ccc}4\end{array}\right]

  • First find the inverse of A by classical adjoint method.

           [ for a matrix \left[\begin{array}{ccc}a&b\\c&d\end{array}\right] the inverse is \left[\begin{array}{ccc}d&-b\\-c& a\end{array}\right]]

A^{-1} =\left[\begin{array}{ccc}4&-3\\-1&1\end{array}\right]

  • Now we can find the inverse of of the given matrix P
  • t = (d –CA⁻¹B)⁻¹

t = ( \left[\begin{array}{ccc}4\end{array}\right] - \left[\begin{array}{ccc}1&3\end{array}\right] \left[\begin{array}{ccc}4&-3\\-1&1\end{array}\right] \left[\begin{array}{ccc}3\\3\end{array}\right] )^{-1}

t = ( \left[\begin{array}{ccc}4\end{array}\right] - \left[\begin{array}{ccc}1&0\end{array}\right]\left[\begin{array}{ccc}3\\3\end{array}\right] )^{-1}

t = (4-3)⁻¹ = 1

  • Y= - A⁻¹Bt

Y = -(\left[\begin{array}{ccc}4&-3\\-1&1\end{array}\right] \left[\begin{array}{ccc}3\\3\end{array}\right] )^{-1} 1

Y = - ( \left[\begin{array}{ccc}3\\0\end{array}\right]) = \left[\begin{array}{ccc}-3\\0\end{array}\right]

  • Z= -C A⁻¹t

Z =  -\left[\begin{array}{ccc}1&3\end{array}\right]\left[\begin{array}{ccc}4&-3\\-1&1\end{array}\right]  1

Z =  -\left[\begin{array}{ccc}1&0\end{array}\right]=\left[\begin{array}{ccc}-1&0\end{array}\right]

  • X = A⁻¹ (I –BZ)

X =\left[\begin{array}{ccc}4&-3\\-1&1\end{array}\right](\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]-\left[\begin{array}{ccc}3\\3\end{array}\right]\left[\begin{array}{ccc}-1&0\end{array}\right])

X =\left[\begin{array}{ccc}4&-3\\-1&1\end{array}\right](\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]-\left[\begin{array}{ccc}-3&0\\-3&0\end{array}\right])

X =\left[\begin{array}{ccc}4&-3\\-1&1\end{array}\right]\left[\begin{array}{ccc}4&0\\3&1\end{array}\right]

X =\left[\begin{array}{ccc}7&-3\\-1&1\end{array}\right]

  • Substitute the value of X,Y,Z,t in \left[\begin{array}{ccc}X&Y\\Z&t\end{array}\right]
  • P^{-1}  = \left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]

To know more about the concept please go through the links

https://brainly.in/question/13357933

https://brainly.in/question/12357495

#SPJ2

Similar questions