Math, asked by prakash76549, 2 months ago

Find inverse of the matrix
2 1
4 3​

Answers

Answered by Seafairy
123

Given :

A=\left[\begin{array}{cc}\sf2&1\\\sf4&3\end{array}\right]

To Find :

  • Find inverse of the Given matrix.

Formula Applied :

\displaystyle {\sf A^{-1}=\frac{1}{|A|}adjA}

Solution :

\left[\begin{array}{cc}\sf2&1\\\sf4&3\end{array}\right]

\sf |A|=(6-4)\implies 2 \neq 0

  • Since A is a nonsingular matrix \sf A^{-1} exist.
  • Let \sf C_{ij} be the co factor of \sf a_{ij} in \sf A = [Aij]^T

\sf C_{11}\implies (-1)^{1+1}(3)\implies 3

\sf C_{12}\implies (-1)^{1+2}(4)\implies -4

\sf C_{11}\implies (-1)^{2+1}(1)\implies -1

\sf C_{11}\implies (-1)^{2+2}(2)\implies 2

\sf \implies \left[\begin{array}{cc}\sf 3&-4\\\sf-1&2\end{array}\right]^T

\sf \therefore adjA = \left[\begin{array}{cc}\sf3&-1\\\sf-4&2\end{array}\right]

\displaystyle{\sf A^{-1}=\frac{1}{|A|}adjA}

\implies \sf \frac{1}{2}\left[\begin{array}{cc}\sf3&-1\\\sf-4&2\end{array}\right]

\boxed{\boxed{\displaystyle {\sf A^{-1}=\left[\begin{array}{cc}\sf \frac{3}{2}&\frac{-1}{2} \\\sf-2 &1\end{array}\right]}}}

Similar questions