Physics, asked by Parthhverma, 8 months ago

Find its Tension and Acceleration​

Attachments:

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{T=  \frac{( m_{1} -  m_{2}g \: sin \:  \theta ) m_{2} g}{ m_{1} +  m_{2} }  + 2 m_{2}g \: sin \:  \theta}}}\\

\green{\tt{\therefore{a =  \frac{(  m_{1} -  m_{2} \: sin \:  \theta)g}{ (m_{1}  +   m_{2}) }}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline{\bold{Given:}}} \\  \tt:  \implies Angle \: of \: wedge =  \theta \\  \\ \tt:  \implies Mass \: of \: blocks =  m_{1} \: and \:  m_{2} \\  \\  \red{\underline{\bold{To \: Find:}}} \\  \tt:  \implies Tension \: in \: the \: string =?  \\  \\ \tt:  \implies Acceleration \: of \: both \: blocks =?

• According to given question :

 \bold{For \: mass \: of \: block( m_{1}) } \\  \tt: \implies  m_{1}g - T=  m_{1}a -  -  -  -  - (1) \\  \\  \bold{For \: block \: of \: mass( m_{2})} \\ \tt: \implies  \frac{T}{2}  -  m_{2}g  \: sin \:  \theta =  \frac{m_{2}a}{2}   \\  \\ \tt: \implies T - 2 m_{2}g \: sin  \:  \theta =  m_{2}a -  -  -  -  - (2) \\  \\  \bold{Adding  \: (1) \: and \: (2)} \\ \tt: \implies  m_{1}g - 2 m_{2}g \: sin \:  \theta =  m_{1}a  +  m_{2}a \\  \\ \tt: \implies(  m_{1} -  m_{2} \: sin \:  \theta)g =( m_{1} +  m_{2})a \\  \\  \green{\tt: \implies a =  \frac{(  m_{1} -  m_{2} \: sin \:  \theta)g}{ (m_{1}  +   m_{2}) } } \\  \\  \text{Putting \: value \: of \: a \: in \: (2)} \\  \\ \tt: \implies T - 2 m_{2}g \: sin  \:  \theta =  m_{2} \times  \frac{( m_{1} -  m_{2}g \: sin \:  \theta )g }{ m_{1} +  m_{2}  }  \\  \\  \green{\tt: \implies T=  \frac{( m_{1} -  m_{2}g \: sin \:  \theta ) m_{2} g}{ m_{1} +  m_{2} }  + 2 m_{2}g \: sin \:  \theta}

Attachments:
Similar questions