find k 5x^2-4x+2+k(4x^2-2x-1)=0
Answers
Answer:
[ k € ( - ∞, - 5 / 4 ) U ( - 5 / 4 , - 6 / 5 ) U ( 1 , + ∞ )
k1 = - 6 / 5 , k2 = 1
k € ( - 6 / 5 , 1 ) ]
Step-by-step explanation:
5 x ^ 2 - 4 x + 2 + k ( 4 x ^ 2 - 2 x - 1 ) = 0
5 x ^ 2 - 4 x + 2 + 4 k x ^ 2 - 2 k x - k = 0
5 x ^ 2 - 4 x + 2 + 4 k x ^ 2 - 2 k x - k = 0
( 5 + 4 k ) x ^ 2 - 4 x + 2 - 2 k x - k = 0
( 5 + 4 k ) x ^ 2 - 4 x + 2 - 2 k x - k = 0
( 5 + 4 k ) x ^ 2 + ( - 4 - 2 k ) x + 2 - k = 0
( 5 + 4 k ) x ^ 2 + ( - 4 - 2 k ) x + 2 - k = 0 ,
k ≠ - 5 / 4
( 5 + 4 k ) x ^ 2 + ( - 4 - 2 k ) x + 2 - k = 0 , k ≠ - 5 / 4
D = ( - 4 - 2 k ) ^ 2 - 4 ( 5 + 4 k ) × ( 2 - k ) ,
k ≠ - 5 / 4
D = 20 k ^ 2 + 4 k - 24 , k ≠ - 5 / 4
it's 3 case : D > 0 , D = 0 , D < 0
[ 20 k ^ 2 + 4 k - 24 > 0 , → case 1
20 k ^ 2 + 4 k - 24 = 0 , → case 2
20 k ^ 2 + 4 k - 24 < 0 ] → case 3
[ 20 k ^ 2 + 4 k - 24 > 0 ,
[ 20 k ^ 2 + 4 k - 24 > 0 , 20 k ^ 2 + 4 k - 24 = 0 ,
20 k ^ 2 + 4 k - 24 < 0 ]
20 k ^ 2 + 4 k - 24 > 0 , → case 1
[ k € ( - ∞, - 6 / 5 ) U ( 1 , + ∞ )
20 k ^ 2 + 4 k - 24 = 0 ,
20 k ^ 2 + 4 k - 24 < 0 ]
20 k ^ 2 + 4 k - 24 = 0 , → case 2
k1 = - 6 / 5 , k2 = 1
20 k ^ 2 + 4 k - 24 < 0 ] → case 3
k € ( - 6 / 5 , 1 )
[ k € ( - ∞, - 5 / 4 ) U ( - 5 / 4 , - 6 / 5 ) U ( 1 , + ∞ )
k1 = - 6 / 5 , k2 = 1
k € ( - 6 / 5 , 1 ) ]