Math, asked by itsonlymecutie, 4 months ago

find k and the other root if x²-6x +K=0
has 3 + √2 as one root.​

Answers

Answered by vipashyana1
1

Answer:

k=7

Step-by-step explanation:

x²-6x +K=0

(3+√2)²-6(3+√2)+k=0

9+6√2+2-18-6√2+k=0

9+2-18+6√2-6√2+k=0

-7+k=0

k=7

Answered by PlYUSH
0

Answer:

k = 7 \:  and \:  other  \: root = (3-√2)

Step-by-step explanation:

put  \: x  \: =  \: (3+ √2)  \: in  \: the \:  equation.</p><p></p><p>      \\ (3+√2)²-6(3+√2)+ k = 0 \\ </p><p>or, 9 + 2 + 6√2 -18 -6√2 + k= 0 \\ </p><p>or, -7 + k = 0 \\ </p><p>or, k = 7. \\ </p><p></p><p>put \:  k= 7 \\ </p><p></p><p>    x²-6x + 7= 0 \\ </p><p></p><p>D = b²-4ac = (-6)² - 4.1.7 = 36 - 28= </p><p></p><h3>D =8</h3><p>

x =   \frac{- b  ± \sqrt{ {b}^{2} - 4ac } }{2a}

x =   \frac{6± \sqrt{8} }{2}  \\  =  \frac{2(3± \sqrt{2}) }{2}  \\  = 3± \sqrt{2}

Hence,  \: the \:  roots \:  are \:  (3+√2) \:  and  \:</p><p> (3-√2).

Similar questions