Math, asked by jibreelahmed2006, 4 months ago

Find k, given that the point (2,k) is equidistant from (3,7) and (9,1).​

Answers

Answered by Sen0rita
37

Given : Point (2 , k) is equidistant from (3 , 7) and (9 , 1).

To Find : Value of k.

⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀____________________

Let

 \:  \:

  • (2 , k) = P
  • (3 , 7) = A
  • (9 , 1) = B

 \:  \:

❍ As point P(2 , k) is equidistant from A(3 , 7) and B(9 , 1)

So,

AP = BP

AP² = BP²

⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀____________________

 \:

As we know that :

 \:

\star \: \underline{\boxed{\mathfrak\purple{Distance \: formula =  \sqrt{(x_{2}  -x_{1}  ){}^{2} + (y_{2}  - y_{1} ) {}^{2}  } }}}

 \:  \:

\sf:\implies \:  \sqrt{(3 - 2) {}^{2}  -(7 - k) {}^{2}  }  =  \sqrt{(9 - 2) {}^{2}  - (1 - k) {}^{2} }  \\  \\  \\  \sf:\implies \:  (3 - 2) {}^{2}  - (7 - k) {}^{2}  = (9 - 2) {}^{2}  - (1 - k) {}^{2}  \\  \\  \\ \sf:\implies \: (1) {}^{2}  - (49 - 14k + k {}^{2} ) = (7) {}^{2}   - (1 - 2k + k {}^{2} ) \\  \\  \\ \sf:\implies \: 1 - 49 + 14k - \cancel{k {}^{2}}  = 49 - 1 + 2k - \cancel{k {}^{2} } \\  \\  \\ \sf:\implies \:  - 48 + 14k = 48 + 2k \\  \\  \\ \sf:\implies \:  14k - 2k = 48 + 48 \\  \\  \\ \sf:\implies \: 12k = 96 \\  \\  \\  \sf:\implies \: k = \cancel \frac{96}{12}  \\  \\  \\   \sf:\implies \: \underline{\boxed{\mathfrak\purple{k = 8}}} \:  \bigstar \\  \\  \\  \\  \sf \therefore{ \underline{Hence ,\: the \: value \: of \: k \: is \:  \bold{8}.}}

Similar questions