find k if k²+4k+8,2k²+3k+6 and 3k²+4k+4 are in A.P.
Answers
Step-by-step explanation:
k²+4k+8,2k²+3k+6 and 3k²+4k+4 are in A.P.
k²+4k+8,2k²+3k+6 and 3k²+4k+4 are in A.P. 2(2k² + 3k + 6) = k² + 4k + 8 + 3k² + 4k + 4
k²+4k+8,2k²+3k+6 and 3k²+4k+4 are in A.P. 2(2k² + 3k + 6) = k² + 4k + 8 + 3k² + 4k + 44k² + 6k + 12 = 4k² + 8k + 12
k²+4k+8,2k²+3k+6 and 3k²+4k+4 are in A.P. 2(2k² + 3k + 6) = k² + 4k + 8 + 3k² + 4k + 44k² + 6k + 12 = 4k² + 8k + 122k = 0
k²+4k+8,2k²+3k+6 and 3k²+4k+4 are in A.P. 2(2k² + 3k + 6) = k² + 4k + 8 + 3k² + 4k + 44k² + 6k + 12 = 4k² + 8k + 122k = 0k = 0
Hope it helps
GIVEN :
k²+4k+8,2k²+3k+6 and 3k²+4k+4 are in an AP.
The common difference between the terms is same.
Difference = a2 - a1 ; a3 - a2
(2k²+3k+6) - (k² + 4k + 8) = (3k²+4k+4) - (2k²+3k+6)
2k²+3k+6 - k² - 4k - 8 = 3k²+4k+4 -2k² - 3k - 6
k² - k - 2 = k² + k - 2
k² - k² - 2 + 2 = k + k
2k = 0
k = 0
Therefore, the value of k is 0.