Math, asked by radhikakuchhadia1865, 3 months ago

find k if the area of triangle whose vertices are A (4,k) , B (-5,-7) , C (-4,1) os 38 sq.units​

Answers

Answered by Tan201
7

Answer:

k=141

Step-by-step explanation:

Given:-

Vertices of the triangle are A (4, k), B (-5, -7), C (-4, 1)

Area of the triangle ABC = 38 sq. units

To find:-

The value of k

Solution:-

x_{1}=4, x_{2}=-5, x_{3}=-4, y_{1}=k,y_{2}=-7, y_{3}=1

Area of the triangle ABC =\frac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]

38=\frac{1}{2}[4(-7-1)+(-5(1-k))+(-4(k-(-7)))]

38=\frac{1}{2}[4(-8)-5+5k+(-4(k+7))]

38=\frac{1}{2}[-32-5+5k+(-4k-28)]

38=\frac{1}{2}[-37+5k-4k-28]

76=-65+k

k=141

∴ The value of k is 141.

Similar questions
Math, 10 months ago