Find k if zeroes ∝ , β of the polynomial 5x² + (2k + 1)x + (k - 2) are such that 2∝ + 5β = 1.
Answers
Given :
α and β are the zeroes of the given polynomial.
Now,
α + β = -b/a
α + β = - (2k + 1)/5
Multiplying both sides by 5,
5α + 5β = -(2k + 1).. (1)
Now,
αβ = c/a
αβ = (k - 2) / 5.. (2)
ATQ,
2α + 5β = 1
5β = 1 - 2α.. (3)
Putting this in eq. (1)
=> 5α + (1 - 2α) = -(2k + 1)
=> 3α = -2k - 2
=> α = (-2k - 2)/3.. (4)
Now,
Putting the value of α in eq. (3)
=> 5β = 1 - 2α
=> 5β = 1 - 2( -2k - 2 ) / 3
=> 5β = 1 + (4k + 4 / 3)
=> 5β = (4k + 4 + 3)/3
=> 5β = (4k + 7)/3
=> β = (4k + 7)/15.. (5)
Now,
From eq. (2), (4) and (5)
eq.(2) = eq. (4) × eq. (5)
(k - 2) / 5 = (-2k - 2)/3 × (4k + 7)/15
Simplifying this..
=> (k - 2) = -8k² - 14k - 8k - 14 / 3 × 3
=> 9k - 18 = -8k² - 22k - 14
=> -8k² - 22k - 14 + 18 - 9k = 0
=> -8k² - 31k + 4 = 0
=> 8k² + 31k + 4 = 0
=> 8k² + 32k - k + 4 = 0
=> 8k( k + 4 ) - 1( k + 4 ) = 0
=> ( 8k - 1 )( k + 4 ) = 0
=> k = 1/8 or k = -4
Thus,
Value of k is 1/8 or -4.
Solution:-
Given:-
- Zeroes of Polynomial :- α and β.
To Find:-
- Value of k = ?
Find:-
- Sum of Zeroes = -b/a
=) α + β = - ( 2k +1)/5
=) 5 ( α + β ) = - ( 2k + 1)
=) 5β = - ( 2k + 1) - 5α _______(1)
- Product of Zeroes = c/a
=) αβ = ( k - 2)/5
=) 5 αβ = k - 2 ______________(2)
Now,
- 2α + 5β = 1 ( Given )
=) 5β = 1 - 2α_____________(3)
Now,
1 - 2α = - ( 2k + 1) - 5α [ ∵ L.H.S. are equal. ]
=) 5α - 2α = - 2k - 1 - 1
=) 3α = -2k - 2
=) α = ( -2k - 2)/3
Substituting [ α = ( -2k - 2)/3 ] in eq.3
=) 5β = 1 - 2α
=) 5β = 1 - 2[ ( -2k - 2)/3 ]
=) 5β = [ 3 - 2( -2k - 2)]/3
=) β = [ 3 + 4k + 4]/15
Substituting the value of α and β in eq. 2
=) 5 αβ = k - 2
=) 5 [ ( -2k - 2)/3 × (3 + 4k + 4)/15 ] = k - 2
=) ( -2k - 2)/3 × (3 + 4k + 4)/15 = ( k -2)/5
=) ( -2k - 2)/3 × (3 + 4k + 4)/3 = ( k -2)
=) [ (-2k -2 )(4k + 7) ]/9 = ( k-2)
=) [ -8k² - 14k - 8k - 14 ) = 9k - 18
=) -8k² - 14k - 8k - 14 - 9k + 18 = 0
=) -8k² - 31k + 4 = 0
=) 8k² + 31k - 4 = 0
=) 8k² + ( 32k - k ) - 4 = 0
=) 8k² + 32k - k - 4 = 0
=) 8k ( k + 4 ) -1 ( k + 4) = 0
=) ( k + 4) ( 8k - 1) = 0
=) [ k = -4 ] and [ k = 1/8 ]
Hence,
Value of k is -4 and 1/8.