find k so that the quadratic equation has equal roots ... (k-4)x^2 + 2(k-4)X+4
Attachments:
Answers
Answered by
2
ANSWER:-
Given:
Quadratic equation has equal roots are;
(k-4)x² + 2(k-4)x +4=0.
To find:
Find the value of k.
Solution:
The roots of the quadratic equation;
=) Ax² +Bx + C= 0
We know that, D= b² -4ac is called discriminant.
D=0
Therefore,
⏺️A= k-4
⏺️B=2(k-4)= 2k-8
⏺️C= 4
So,
b² - 4ac =0
=) (2k-8)² - 4×k-4× 4=0
=) (2k-8)² - 4k×-16=0
=) (2k)² +(8)² -2×2k×8 + 64k=0
=) 4k² + 64 -32k +64k=0
=) 4k² + 64 + 32k =0
=) 4k² +32k+64=0
=) k² + 8k + 16=0
=) k² +4k+4k +16=0
=) k(k+4) +4(k+4)=0
=) (k+4) (k+4)=0
=) k+4 =0 OR k+4=0
=) k= -4 OR k= -4
Hope it helps ☺️
Similar questions
Math,
5 months ago
English,
5 months ago
India Languages,
11 months ago
Math,
11 months ago
Math,
1 year ago