find k so that x² + 2x +k is a factor of 2x⁴ + x³ -14x² + 5x +6
Answers
Answered by
4
Given factor: x² + 2x + k = 0
Given polynomial: 2x⁴ + x³ -14x² + 5x + 6
Divide the polynomial by the factor
x²+2x+k )2x⁴+x³-14x²+5x+6(2x²-3x+(-8-2k)
2x² + 4x³ +2kx² ( substract)
------------------------------
- 3x³+(-14-2k)x²+5x
- 3x³-6x²-3kx ( substract)
------------------------------
(-8-2k)x²+(5+3k)x+6
(-8-2k)x²+(-16-4k)x+(-8k - 2k² (substract)
( 21 + 7k)x + (6 + 8k + 2k²)
The remainder is: ( 21 + 7k)x + (6 + 8k + 2k²) = 0
21+7k = 0 ⇒ k = -3.
The factors are x²+2x-3=0 and 2x²-3x-2=0
x²+3x-x-3=0 and 2x²-4x+x-2=0
x(x+3)-1(x+3)=0 and 2x(x-2)+1(x-2)=0
(x-1)(x+3)=0 and (2x+1)(x-2)=0
x = 1 ,3 ,-1 / 2 and 2.
The zeros are 1 ,3 ,-1 / 2 and 2.
Similar questions