Math, asked by choudharyak1974, 9 months ago

Find k such that x2 +2x +k is a factor of 2x4 +x3- 14x2 + 5x +6 . Also, find the zeroes of the two polynomials.

Answers

Answered by aakriti05
1

Step-by-step explanation:

Given factor: x2 + 2x + k = 0

Given polynomial: 2x4 + x3 -14x2 + 5x + 6

Divide the polynomial by the factor

x2 + 2x + k ) 2x4 + x3 -14x2 + 5x + 6 ( 2x2 - 3x +(- 8 - 2k)

2x4 + 4x3 +2kx2 ( substract)

------------------------------

- 3x3 +(-14 - 2k)x2 + 5x

- 3x3 - 6x2 - 3kx ( substract)

------------------------------

(- 8 - 2k) x2 +( 5 + 3k)x + 6

(- 8 - 2k) x2 +(-16 - 4k)x + (- 8k - 2k2) ( substract)

-----------------------------------------------------------------

( 21 + 7k)x + (6 + 8k + 2k2)

The remainder is: ( 21 + 7k)x + (6 + 8k + 2k2) = 0

21 + 7k = 0 ⇒ k = -3.

The factors are x2 + 2x - 3 = 0 and 2x2 - 3x - 2 = 0

x2 + 3x - x - 3 = 0 and 2x2 - 4x + x - 2 = 0

x( x + 3 )-1( x + 3) = 0 and 2x (x - 2) + 1(x - 2) = 0

(x - 1)( x + 3) = 0 and (2x + 1)(x - 2) = 0

x = 1 ,3 ,-1 / 2 and 2.

The zeros are 1 ,3 ,-1 / 2 and 2.

Hope it helps

mrk me as BRAINLIEST

Answered by amitnrw
1

Given  :  x² + 2x +K is a factor of 2x⁴ + x³ – 14x² + 5x + 6.

To find  :  all the zeros of the two polynomials

Solution:

                          2x² - 3x  - (8 + 2K)  

   x² + 2x +K _|  2x⁴ + x³ – 14x² + 5x + 6  |_

                          2x⁴ + 4x³+ 2Kx²

                       ________________

                                  -3x³ -(14 +2K)x² + 5x + 6

                                  -3x³ - 6x²  -3kx

                                  __________________

                                          - (8 + 2K)x²  + (5 +3k)x  + 6

                                          - (8 + 2K)x²  - (16 +4k)x  - (8K + 2K²)

                                       ___________________________

                                                               (21 + 7k)x  +  (2K² + 8K + 6)      

x coefficients and constant term must be zero

21 + 7K = 0

=> K = - 3

2K² + 8K +  6  = ( K +  3)(2K  + 2)  

Value of K = - 3  as this is common solution

  x² + 2x +K  =   x² + 2x  - 3

=> (x  + 3)(x - 1)  =>  Zeroes are   -3 , 1

2x² - 3x  - (8 + 2K)    = 2x² - 3x   - 2  =  2x²  - 4x +  x  - 2

= 2x(x - 2) + 1(x - 2)

= (2x + 1)(x - 2)

=> x = -1/2  , 2

Zeroes are   - 3 , -1/2 , 1 , 2

Value of k = - 3

Learn More:

Obtain all other zeros of x 4 + 4 x cube minus 2 x square - 20 x ...

brainly.in/question/9634458

obtain all the zeros of the polynomial 8x^4+8x^3-18x^2-20x-5 if two ...

brainly.in/question/7286826

Similar questions